0:Меры центральной тенденции и рассеяния

Материал из Викиверситета
Перейти к навигации Перейти к поиску
Fairytale up blue.png
Вы находитесь в Инкубаторе

Создать уровень выше


Меры центральной тенденции - различные способы осмысления центральной или средней позиции группы наблюдений, чисел и т.д. Назначение - служить сводными количественными характеристиками, обеспечивающими наилучшее описание множества наблюдений или оценок одним единственным числом. Термины М. ц. т. и «средняя величина» часто употребляются как равнозначные, хотя некоторые авторы сужают объем понятия «средняя величина» до среднего арифметического. Несмотря на разнообразие М. ц. т., чаще всего встречаются мода, медиана и среднее.

Мода - это просто наиболее часто встречающееся в определенной совокупности наблюдений значение переменной. При сгруппированных данных мода определяется как середина интервала группирования, содержащего наибольшее число значений наблюдаемой переменной.

Медиана - это значение переменной, делящее упорядоченную совокупность наблюдений пополам, так что одна половина значений в этой совокупности лежит ниже медианы, а др. их половина - выше медианы. Если совокупность образована нечетным числом значений наблюдаемой переменной, то медиана равна значению переменной, являющемуся серединой упорядоченной совокупности наблюдений. Если же совокупность образована четным числом значений, то медиана определяется значением, лежащим посередине между двумя значениями, находящимися в центре упорядоченной совокупности наблюдений. Медиана - более полезная мера, чем мода, и часто используется в случае скошенного (асимметричного) распределения данных. Следует, однако, отметить, что медиана нечувствительна к величине крайних значений упорядоченной совокупности наблюдений.

Среднее - особенно полезная мера в области статистических выводов, поскольку выборочное среднее является относительно эффективной оценкой генерального среднего. Если из генеральной совокупности значений наблюдаемой переменной случайно извлечь даже большое количество выборок, не следует ожидать точного равенства выборочных средних между собой или генеральному среднему. Однако, можно доказать, что выборочные средние отклоняются от генерального среднего меньше, чем выборочные медианы отклоняются от медианы генеральной совокупности.

Меры рассеяния – это статистические показатели, характеризующие различия между отдельными значениями выборки. Они позволяют судить о степени однородности полученного множества, его компактности, а косвенно и о надежности полученных данных и вытекающих из них результатов. Наиболее используемые в психологических исследованиях показатели: среднее отклонение, дисперсия, стандартное отклонение.

Среднее отклонение (МД) – это среднеарифметическое разницы (по абсолютной величине) между каждым значением в выборке и ее средним. Дисперсия (D) характеризует отклонения от средней величины в данной выборке. Стандартное отклонение (б) - из-за возведения в квадрат отдельных отклонений d при вычислении дисперсии полученная величина оказывается далекой от первоначальных отклонений и потому не дает о них наглядного представления. Чтобы этого избежать и получить характеристику, сопоставимую со средним отклонением, проделывают обратную математическую операцию – из дисперсии извлекают квадратный корень. Его положительное значение и принимается за меру изменчивости, именуемую среднеквадратическим, или стандартным, отклонением.

См. также[править]