Обсуждение участника:Masha

Материал из Викиверситета
Перейти к навигации Перейти к поиску

Добро пожаловать в Викиверситет![править]

Иллюстрирование Википедии: Руководство по размещению файлов на Викискладе. После загрузки файлов на Викисклад их можно будет использовать в статьях Викиверситета.

Здравствуйте, и добро пожаловать в русскоязычную часть Викиверситета! Надеемся, Вы получите большое удовольствие от участия в проекте.

Постарайтесь вначале статьи обозначить цель Вашей работы. Укажите, является ли создаваемая Вами страница учебным курсом или исследовательской работой.

Если Вы хотите написать энциклопедическую статью, то для этого есть Википедия, см. Чем не является Викиверситет.

Ознакомьтесь, пожалуйста, с вики-разметкой и принципами размещения и именования статей.

Чтобы получать актуальную информацию о событиях, происходящих в Викиверситете, Вы можете установить шаблон {{Актуально}}, например, в самое начало своей страницы обсуждения.

Иллюстрации загружайте на Викисклад, предназначенный для хранения медиафайлов вики-проектов. Прочитайте, пожалуйста, брошюру об основах иллюстрирования статей в Википедии и работе на Викискладе. Загруженные файлы на Викисклад можно будет одинаково легко использовать в Википедии и в Викиверситете.

По всем вопросам смело обращайтесь на портал сообщества или к одному из администраторов. При этом, пожалуйста, подписывайтесь на страницах обсуждения (но не в статьях Викиверситета), используя четыре идущих подряд знака тильды (~~~~). И ещё раз — добро пожаловать! :-) вы можете убрать данный шаблон с вашей страницы обсуждения по собственному желанию


КПВ ОПД[править]

занятие 01.02.2010[править]

--Masha 07:38, 1 февраля 2010 (UTC)Ответить[ответить]

Свободное ПО в школе --Masha 08:02, 1 февраля 2010 (UTC) --Masha 08:01, 1 февраля 2010 (UTC)Ответить[ответить]

Образование в США

Американская средняя школа из Бэксли (штат Огайо) сообщила о переводе всех настольных ПК, работающих под управлением Windows ME, на Linux вместо Windows XP. По данным местной газеты, школе удалось сэкономить 412 тысяч USD на лицензиях благодаря такой миграции. Как сообщила Анна Хиланд (Anne Hyland), ответственная за расписание занятий и процесс обучения, общий районный технологический бюджет в прошлом году составил 159 тысяч USD, а поводом к отказу от Windows ME стало приобретение новых компьютеров, которые оказались несовместимыми с Windows ME. В результате этого руководство столкнулось с дополнительными расходами (помимо тех, что были вызваны покупкой нового железа), связанными с переходом на Windows XP. Миграция на Linux решила проблему — сэкономить также удалось и благодаря тому, что для операционной системы с открытым кодом не понадобилось приобретать антивирусное программное обеспечение. Для запуска некоторых программ, работающих в среде Windows ME, будут использоваться технологии вроде WINE или Crossover. Вместе с тем, руководство начало процесс изучения Linux-программ на предмет возможности их дальнейшего использования на новых системах. Кроме того, районные власти сообщили о намерении полностью перевести все свои компьютеры на Linux к 2010 году. --Masha 08:01, 1 февраля 2010 (UTC) w: Свободное ПО --Masha 08:51, 3 февраля 2010 (UTC)Ответить[ответить]

занятие 03.02.2010[править]

Доступ процессов к файлам и каталогам

Загрузка Linux завершается тем, что на всех виртуальных консолях, предназначенных для работы пользователей, запускается программа getty. Программа выводит приглашение и ожидает активности пользователя, который может захотеть работать именно на этом терминале. Введённое входное имя getty передаёт программе login, которая вводит пароль и определяет, разрешено ли работать в системе с этим входным именем и этим паролем. Если login приходит к выводу, что работать можно, он запускает стартовый командный интерпретатор, посредством которого пользователь и командует системой.

Выполняющаяся программа называется в Linux процессом. Все процессы система регистрирует в таблице процессов, присваивая каждому уникальный номер — идентификатор процесса (process identificator, PID). Манипулируя процессами, система имеет дело именно с их идентификаторами, другого способа отличить один процесс от другого, по большому счёту, нет.

Запуск дочерних процессов

Запуск одного процесса вместо другого устроен в Linux с помощью системного вызова exec(). Старый процесс из памяти удаляется навсегда, вместо него загружается новый, при этом настройка окружения не меняется, даже PID остаётся прежним. Вернуться к выполнению старого процесса невозможно, разве что запустить его по новой с помощью того же exec() (от «execute» — «исполнить»). Кстати, имя файла (программы), из которого запускается процесс, и собственное имя процесса (в таблице процессов) могут и не совпадать. Собственное имя процесса — это такой же параметр командной строки, как и те, что передаются ему пользователем: для exec() требуется и путь к файлу, и полная командная строка, нулевой (стартовый) элемент которой — как раз название команды



Нулевой параметр — argv[0] в терминах языка Си и $0 в терминах shell


 Вот откуда “-” в начале имени стартового командного интерпретатора (-bash): его «подсунула» программа login, чтобы была возможность отличать его от других запущенных тем же пользователем оболочек. 

Для работы командного интерпретатора недостаточно одного exec(). В самом деле, shell не просто запускает утилиту, а дожидается её завершения, обрабатывает результаты её работы и продолжает диалог с пользователем. Для этого в Linux служит системный вызов fork() («вилка, развилка»), применение которого приводит к возникновению ещё одного, дочернего, процесса — точной копии породившего его родительского. Дочерний процесс ничем не отличается от родительского: имеет такое же окружение, те же стандартный ввод и стандартный вывод, одинаковое содержимое памяти и продолжает работу с той же самой точки (возврат из fork()). Отличия два: во-первых, эти процессы имеют разные PID, под которыми они зарегистрированы в таблице процессов, а во-вторых, различается возвращаемое значение fork(): родительский процесс получает в качестве результата fork() идентификатор процесса-потомка, а процесс-потомок получает “0”.

Дальнейшие действия shell при запуске какой-либо программы очевидны. Shell-потомок немедленно вызывает эту программу с помощью exec(), а shell-родитель дожидается завершения работы процесса-потомка (PID которого ему известен) с помощью ещё одного системного вызова, wait(). Дождавшись и проанализировав результат команды, shell продолжает работу.



Пример. Создание бесконечно выполняющегося сценария

По совету Гуревича Мефодий создал сценарий для sh (или bash, на таком уровне их команды совпадают), который ничего не делает. Точнее было бы сказать, что этот сценарий делает ничего, бесконечно повторяя в цикле команду, вся работа которой состоит в том, что она завершается без ошибок (в лекции Работа с текстовыми данными будет сказано о том, что “> файл” в командной строке просто перенаправляет стандартный вывод команды в файл). Запустив этот сценарий с помощью команды вида sh имя_сценария, Мефодий ничего не увидел, но услышал, как загудел вентилятор охлаждения центрального процессора: машина трудилась! Управляющий символ “^C”, как обычно, привёл к завершению активного процесса, и командный интерпретатор продолжил работу.

Если бы в описанной выше ситуации родительский процесс не ждал, пока дочерний завершится, а сразу продолжал работать, получилось бы, что оба процесса выполняются «параллельно»: пока запущенный процесс что-то делает, пользователь продолжает командовать оболочкой. Для того, чтобы запустить процесс параллельно, в shell достаточно добавить “&” в конец командной строки

Процесс, запускаемый параллельно, называется фоновым (background). Фоновые процессы не имеют возможности вводить данные с того же терминала, что и породивший их shell (только из файла), зато выводить на это терминал могут (правда, когда на одном и том же терминале вперемежку появляются сообщения от нескольких фоновых процессов, начинается сущая неразбериха). При каждом терминале в каждый момент времени может быть не больше одного активного (foreground) процесса, которому разрешено с этого терминала вводить. На время, пока команда (например, cat) работает в активном режиме, породивший её командный интерпретатор «уходит в фон», и там, в фоне, выполняет свой wait().



активный процесс - процесс, имеющий возможность вводить данные с терминала. В каждый момент у каждого терминала может быть не более одного активного процесса.



фоновый процесс - процесс, не имеющий возможность вводить данные с терминала. Пользователь может запустить любое, не превосходящее заранее заданного в системе, число фоновых процессов.



Стоит заметить, что параллельность работы процессов в Linux — дискретная. Здесь и сейчас выполняться может столько процессов, сколько центральных процессоров есть в компьютере (например, один). Дав этому одному процессу немного поработать, система запоминает всё, что тому для работы необходимо, приостанавливает его, и запускает следующий процесс, потом следующий и так далее. Возникает очередь процессов, ожидающих выполнения. Только что поработавший процесс помещается в конец этой очереди, а следующий выбирается из её начала. Когда очередь вновь доходит до того, первого процесса, система вспоминает необходимые для его выполнения данные (они называются контекстом процесса), и он продолжает работать, как ни в чём не бывало. Такая схема разделения времени между процессами носит названия псевдопараллелизма.

В выдаче ps, которую получил Мефодий, можно заметить, что PID стартовой оболочки равен 3590, а PID запущенных из-под него команд (одной фоновой и одной активной) — 3634 и 3635. Это значит, что за время, прошедшее с момента входа Мефодия в систему до момента запуска sh loop&, в системе было запущено ещё 3634-3590=44 процесса. Что ж, в Linux могут одновременно работать несколько пользователей, да и самой системе иногда приходит в голову запустить какую-нибудь утилиту (например, выполняя действия по расписанию). А вот sh и ps получили соседние PID, значит, пока Мефодий нажимал Enter и набирал ps -f, никаких других процессов не запускалось.

В действительности далеко не всем процессам, зарегистрированным в системе, на самом деле необходимо давать поработать наравне с другими. Большинству процессов работать прямо сейчас не нужно: они ожидают какого-нибудь события, которое им нужно обработать. Чаще всего процессы ждут завершения операции ввода-вывода. Чтобы посмотреть, как потребляются ресурсы системы, можно использовать утилиту top. Но сначала Мефодий решил запустить ещё один бесконечный сценарий: ему было интересно, как два процесса конкурируют за ресурсы между собой.

Сигналы

Чтобы завершить работу фонового процесса с помощью “^C”, Мефодию пришлось сначала сделать его активным. Это не всегда возможно, и не всегда удобно. На самом деле, “^C” — это не волшебная кнопка-убийца, а предварительно установленный символ (с ascii-кодом 3), при получении которого с терминала Linux передаст активному процессу сигнал 2 (по имени INT, от «interrupt» — «прервать»).

Сигнал — это способность процессов обмениваться стандартными короткими сообщениями непосредственно с помощью системы. Сообщение-сигнал не содержит никакой информации, кроме номера сигнала (для удобства вместо номера можно использовать предопределённое системой имя). Для того, чтобы передать сигнал, процессу достаточно задействовать системный вызов kill(), а для того, чтобы принять сигнал, не нужно ничего. Если процессу нужно как-то по-особенному реагировать на сигнал, он может зарегистрировать обработчик, а если обработчика нет, за него отреагирует система. Как правило, это приводит к немедленному завершению процесса, получившего сигнал. Обработчик сигнала запускается асинхронно, немедленно после получения сигнала, что бы процесс в это время ни делал.



сигнал - короткое сообщение, посылаемое системой или процессом другому процессу. Обрабатывается асинхронно специальной подпрограммой-обработчиком. Если процесс не обрабатывает сигнал самостоятельно, это делает система.



Два сигнала — 9 (KILL) и 19 (STOP) — всегда обрабатывает система. Первый из них нужен для того, чтобы убить процесс наверняка (отсюда и название). Сигнал STOP приостанавливает процесс: в таком состоянии процесс не удаляется из таблицы процессов, но и не выполняется до тех пор, пока не получит сигнал 18 (CONT) — после чего продолжит работу. В Linux сигнал STOP можно передать активному процессу с помощью управляющего символа “^Z

Доступ к файлу и каталогу

Довольно насилия. Пора Мефодию задуматься и о другой стороне работы с Linux: о правах и свободах. Для начала — о свободах. Таблица процессов содержит список важнейших объектов системы — процессов. Однако не менее важны и объекты другого класса, те, что доступны в файловой системе: файлы, каталоги и специальные файлы (символьные ссылки, устройства и т. п.). По отношению к объектам файловой системы процессы выступают в роли действующих субъектов: именно процессы пользуются файлами, создают, удаляют и изменяют их. Факт использования файла процессом называется доступом к файлу, а способ воспользоваться файлом (каталогом, ссылкой и т. д.) — видом доступа.


Чтение, запись и использование Видов доступа в файловой системе Linux три. Доступ на чтение (read) разрешает получать информацию из объекта, доступ на запись (write) — изменять информацию в объекте, а доступ на использование (execute) — выполнить операцию, специфичную для данного типа объектов. Доступ к объекту можно изменить командой chmod (change mode, сменить режим (доступа)). В простых случаях формат этой команды таков: chmod доступ объект, где объект — это имя файла, каталога и т. п., а доступ описывает вид доступа, который необходимо разрешить или запретить. Значение “+r” разрешает доступ к объекту на чтение (read), “-r” — запрещает. Аналогично “+w”, “-w”, “+x” и “-x” разрешают и запрещают доступ на запись (write) и использование (execute).


Сценарий

Исполняемые файлы в Linux бывают ровно двух видов. Первый — это файлы в собственно исполняемом (executable) формате. Как правило, такие файлы — результат компиляции программ, написанных на классических языках программирования, вроде Си. Попытка прочитать такой файл с помощью, например, cat не приведёт ни к чему полезному: на экран полезут разнообразные бессмысленные символы, в том числе — управляющие. Это — так называемые машинные коды — язык, понятный только компьютеру. В Linux используется несколько форматов исполняемых файлов, состоящих из машинных кодов и служебной информации, необходимой операционной системе для запуска программы: согласно этой информации, ядро Linux выделяет для запускаемой программы оперативную память, загружает программу из файла и передаёт ей управление. Большинство утилит Linux — программы именно такого, «двоичного» формата.

Второй вид исполняемых файлов — сценарии. Сценарий — это текстовый файл, предназначенный для обработки какой-нибудь утилитой. Чаще всего такая утилита — это интерпретатор некоторого языка программирования, а содержимое такого файла — программа на этом языке. Мефодий уже написал один сценарий для sh: бесконечно выполняющуюся программу loop. Поскольку к тому времени он ещё не знал, как пользоваться chmod, ему всякий раз приходилось явно указывать интерпретатор (sh или bash), а сценарий передавать ему в виде параметра (см. примеры в разделе Процессы).



сценарий - исполняемый текстовый файл. Для выполнения сценария требуется программа-интерпретатор, путь к которой может быть указан в начале сценария в виде “#!путь_к_интерпретатору”. Если интерпретатор не задан, им считается /bin/sh.



Если же сделать файл исполняемым, то ту же самую процедуру — запуск интерпретатора и передачу ему сценария в качестве параметра командной строки — будет выполнять система:



Доступ к каталогу

В отличие от файла, новый каталог создаётся (с помощью mkdir) доступным и на чтение, и не запись, и на использование. Суть всех трёх видов доступа к каталогу менее очевидна, чем суть доступа к файлу. Вкратце она такова: доступ по чтению — это возможность просмотреть содержимое каталога (список файлов), доступ по записи — это возможность изменить содержимое каталога, а доступ на использование — возможность воспользоваться этим содержимым: во-первых, сделать этот каталог текущим, а во-вторых, обратиться за доступом к содержащемуся в нём файлу.

--Masha 09:16, 3 февраля 2010 (UTC)Ответить[ответить]

занятие 17.02.2010[править]

Gnumeric

Итерфейс программы

Окно приложения содержит главное меню вверху, две панели инструментов ниже, и под ними слева панель объектов и справа ячейка ввода данных над рабочей областью, которая в свою очередь расположена над списком листов и строкой состояния.

Названия панелей перечислены ниже со ссылками на более подробное описание соответствующей панели.

  1. Главное меню Данное меню обеспечивает доступ к базовым функциям Gnumeric. Кроме того, вы можете получить доступ ко всем операциям в Gnumeric через главное меню.
  2. Стандартная панель инструментов позволяет быстро перейти к наиболее часто используемым функциям.
  3. Панель форматирования позволяет изменить формат написания данных в рабочей области.
  4. Панель объектов позволяет рисовать графические объекты на листе такие как метки, красные окружности, тонкие зеленые стрелки. Вы можете использовыть их для привлечения внимания к конкретным местам на рабочей области.
  5. Ячейка ввода данных очень удобна при вводе сложных формул.
  6. Рабочая область занимает большую часть окна приложения и включает в себя наименования строк и столбцов, полосы прокрутки и табулируемые группы ниже.
  7. В панели состояния отображается информация о текущих операциях.


Электронные таблицы

Викиучебник Электронные таблицы

Электро́нные табли́цы (или табличные процессоры) - это прикладные программы, предназначенные для проведения табличных расчетов. Появление электронных таблиц исторически совпадает с началом распространения персональных компьютеров. Первая программа для работы с электронными таблицами — табличный процессор, была создана в 1979 году, предназначалась для компьютеров типа Apple II и называлась VisiCalc. В 1982 году появляется знаменитый табличный процессор Lotus 1-2-3, предназначенный для IBM PC. Lotus объединял в себе вычислительные возможности электронных таблиц, деловую графику и функции реляционной СУБД. Популярность табличных процессоров росла очень быстро. Появлялись новые программные продукты этого класса: Multiplan, Quattro Pro, SuperCalc и другие. Одним из самых популярных табличных процессоров сегодня является MS Excel, входящий в состав пакета Microsoft Office.

Табличный процессор – эта программа предназначена для действий с таблицами электронными. Сначала редакторы обрабатывали таблицы двухмерные, с данными числовыми. Но потом появились программы, имевшие возможность работать с мультимедийными, графическими и текстовыми файлами. Инструментарий редактора включал уже функции математические, которые позволяли делать сложные расчёты по статистике и финансам.

Табличные редакторы являются программами прикладного характера, которые выполняют расчёты табличные. Появление редакторов табличных совпал с широким распространением компьютеров персональных. Первая программа табличного процессора создалась в 1979 году, называлась VisiCalc и предназначалась для работы с компьютерами Apple II. Затем проявляется в 1982 году знаменитый процессор табличный Lotus 1-2-3, он объединял функции графики, таблиц и реляционной СУБД, он был предназначен для IBM PC.

Популярность процессоров табличных распространялась мгновенно. Появились программы новые: SuperCalc, Quattro Pro, Multiplan и много других. Одним из современных табличных популярных процессоров MS Excel, который входит в пакет программ Microsoft Office.

Табличный процессор EditGrid

EditGrid — онлайновый табличный процессор, предоставляющий основные функции, присущие как онлайновым конкурентам, так и оффлайновым аналогам.

занятие 24.02.2010[править]

занятие 3.03.2010[править]

занятие 10.03.2010[править]

Разработки участников конкурса "Код свободы"[править]

Практическая работа преподавателей - практиков по разработке методического обеспечения для ПСПО отражена в материалах представленных на конкурс "Код свободы".

Одим из победителей конкурса является Маняхина Валентина Геннадьевна.Её работы на темы:

Индивидуальные задания[править]

Vitaly

Задание[править]

Изучить работу участника конкурса Код свободы Беляевой О.С. и написать отчет с использованием гиперссылок на отдельные страницы.

Отчет[править]

Нелли

Задание[править]

Изучить работу участника конкурса Код свободы Гречухина Н.В. и написать отчет с использованием гиперссылок на отдельные страницы.

Отчет[править]

Сабина

Задание[править]

Изучить работу участника конкурса Код свободы Бутюниной Н.Л. и написать отчет с использованием гиперссылок на отдельные страницы.

Отчет[править]

занятие 11.03.2010[править]

вопросы

При шинной структуре связей сигналы между устройствами передаются:

  1. по одним и тем же линиям связи, но в разное время
  2. по разным линиям связи, но в одно и то же время
  3. по одним и тем же линиям связи и в одно и то же время

К мультимедийным устройствам относится:

  1. звуковая карта
  2. оперативная память
  3. материнская плата


Для того, чтобы информация хранилась долгое время ее, надо записать

  1. в оперативную память
  2. в регистры процессора
  3. на жесткий диск


Монитор работает под управлением:

  1. оперативной памяти
  2. звуковой карты
  3. видеокарты

Модель знаний, основанная на фрегментации знаний это:

  1. фреймовая модель
  2. логическая модель
  3. сетевая модель

Вопросы для самостоятельного изучения[править]

Основные понятия информатизации обучения.[править]

Несмотря на то, что технические средства обучения (ТСО) активно используются в учебном процессе, они являются вспомогательным дидактическим средством. Определяющая роль в традиционном обучении принадлежит преподавателю - интерпретатору знаний. Общение преподавателя со студентом составляет основу передачи информации, важной особенностью которой является наличие оперативной обратной связи.

Однако уже с самых ранних этапов развития коммуникационных средств в межличностных отношениях используется опосредованное общение с разделенной во времени обратной связью. Именно оно является основой обучения на расстоянии. Очевидно, что психологическая и информационная насыщенность опосредованного общения зависит от уровня технических средств, используемых при этом. Но даже при самых совершенных средствах коммуникаций использование традиционных методов обучения, основанных на диалоге преподавателя со студентом, не будет давать эффекта непосредственного общения, не говоря уже о многократно возрастающей стоимости такой технологии.

Иная ситуация возникает с использованием компьютера в учебном процессе. Главной особенностью, отличающей компьютер от обычных ТСО, является возможность организации диалога человека с компьютером посредством интерактивных программ. При наличии телекоммуникационного канала компьютер может как выступать посредником между преподавателем и студентом, так и брать на себя часть учебного процесса. Для этого компьютер обладает возможностями хранения и оперативной обработки информации, представленной в мультимедиа виде. К этому следует добавить возможность доступа к удаленным базам данных (электронным библиотекам) посредством сети Интернет, возможность общения с любыми партнерами посредством электронных конференций, возможность передачи информации в любом виде и любого объема. Таким образом, компьютер можно не только использовать как дидактическое средство в традиционном процессе обучения, но и реализовать с его помощью возможность обучения на расстоянии, по качеству не уступающего технологиям очного обучения.

Психолого-педагогические основы информатизации обучения.[править]

Конечно, содержание образования и его цели не зависят от формы обучения. Однако применение компьютерных средств требует иной формы представления знаний, организации познавательной деятельности студентов и выбора методов обучения.

Прежде всего, это связано с появлением возможности оптимизации учебного процесса путем переноса его центра тяжести на самостоятельную работу студентов, активизации этой деятельности и повышения ее эффективности и качества. Использование компьютерных средств позволяет получать первичную информацию не только от преподавателя, но и с помощью интерактивных обучающих программ, которые помогают студенту при определенной степени компетентности освоить ту или иную дисциплину. Имея неограниченные пространственные и временные рамки получения информации, студент в процессе самостоятельной работы может находиться в режиме постоянной консультации с различными источниками информации. Кроме того, компьютер позволяет постоянно осуществлять различные формы самоконтроля, что повышает мотивацию познавательной деятельности и творческий характер обучения.

Следующим важным следствием применения компьютерных средств является использование инновационных методов обучения, которые носят коллективный исследовательский характер. Эти методы принимают активную форму, направленную на поиск и принятие решений в результате самостоятельной творческой деятельности.

Обучение с применением компьютерных средств относится к классу интенсивных методов, однако использование гипертекстовых структур учебного материала позволяет создать открытую систему интенсивного обучения, когда студенту предоставляется возможность выбора подходящей ему программы и технологии обучения, т.е. система адаптируется под индивидуальные возможности студента. Обучение становится гибким, не связанным жестким учебным планом и обязательными аудиторными мероприятиями. Роль преподавателя по мере совершенствования технологий все более и более сводится к управлению учебным процессом, однако это не принижает его влияния в познавательной деятельности и не вытесняет его из учебного процесса. Таким образом, форма обучения с применением компьютерных средств отличается от существующих как по организации учебного процесса, так и по методам обучения. В основе этой формы обучения лежит определенная дидактическая концепция, основные положения которой можно сформулировать следующим образом:

Процесс обучения строится в основном на самостоятельной познавательной деятельности студента. Этот принцип определяет отношение субъектов процесса обучения и роль преподавателя в учебном процессе. Несомненно, личностное общение преподавателя и студента есть неоценимое качество очной формы обучения и его никогда не заменит общение студента с любой, даже самой умной машиной. Однако в такой педагогической ситуации определяющим является талант педагога, который в условиях массового обучения не имеет такого эффекта, как при ндивидуализированном обучении.

Если же ставить целью максимальное раскрытие творческих способностей студента, то необходимо создать такую образовательную среду, которая в максимальной степени способствовала бы этому. И здесь, прежде всего, необходимо обеспечить максимальный доступ студента к учебной информации.

Современные средства и технологии позволяют это сделать. Сейчас практически все образовательные учреждения высшего профессионального образования имеют информационные ресурсы, обеспеченные средствами удаленного доступа посредством Интернет. В этом случае основным техническим средством обучения является компьютер. Обучающие функции компьютера реализуются через компьютерные обучающие программы (КОП). Имея различное назначение (теоретический материал, тренажеры, контролирующие программы), эти обучающие программы обладают таким важным общим свойством как интерактивность. Именно это свойство программы помогает воспроизвести эффект общения преподавателя со студентами. Разработка КОП - достаточно сложная процедура, но главным элементом в ней является участие преподавателя. Это позволяет передать компьютерной программе педагогическую индивидуальность преподавателя, то есть то, что в традиционной педагогике является основой педагогической школы.

Создание компьютерных обучающих программ требует от преподавателя определенных специфических знаний в области информационных технологий, но самое важное здесь - понять, что КОП требует иной организации (структурирования) учебного материала.

Итак, какова же роль преподавателя в этой учебной среде, представляющей собой море информации, средства доступа к ней и обучающие программы.

Первое - руководство учебным процессом, которое включает в себя консультирование студентов на всех этапах учебной программы и контроль качества знаний студентов. При этом функция интерпретатора знаний, которая в традиционной дисциплинарной модели обучения принадлежит преподавателю, переходит в данной (информационной) модели к самому студенту.

Второе, и не менее важное - воспитательная функция преподавателя. Образование - сложный и многогранный процесс развития профессиональных и личностных качеств, а "живое" общение в процессе воспитания личности - основа существования человеческого общества. В дистанционном обучении вовсе не отменятся непосредственное общение преподавателя и студента. Просто то, насколько оно должно быть интенсивным, зависит от многих факторов.

Есть две возможности частичной компенсации отсутствия или недостатка в непосредственном (физическом) общении преподавателя и студента.

Первая - это организация их общения посредствам сетевых технологий (почтовых технологий, видео и звуковых конференций), среди которых наиболее эффективной и максимально приближенной к очной является видеоконференция. Но ее проведению препятствуют технические факторы. Другой возможностью организации общения преподавателя и студентов является тьюториал как система поддержки и сопровождения учебного процесса посредствам тьюторов (преподавателей - консультантов). Функции тьюторов достаточно подробно описаны в литературе [5]. Важно понимать, что регламентация этих функций достаточно условна и в действительности определяется профессиональными качествами тьюторов.

Познавательная деятельность студента должна носить активный характер. Активный характер обучения, основанного на компьютерных технологиях, тесно связан с принципом самообразования. Самообразование невозможно без активного участия студента в учебном процессе. Активное участие определяется, прежде всего, внутренней мотивацией, выраженной как желание учиться.

В дистанционном обучении необходима активная познавательная самостоятельная мыслительная деятельность. Поэтому, при дистанционном обучении необходимо использовать такие методы и технологии, которые способствуют умению самостоятельно добывать нужную информацию, вычленять проблемы и способы их рационального решения, критически анализировать полученные знания и применять их на практике и для получения новых знаний.

Согласно Лернеру и Скаткину, существует пять общедидактических методов, определяемых характером деятельности обучаемых: объяснительно-иллюстративный, репродуктивный, проблемного изложения, частично поисковый, исследовательский. Эти методы эффективно используется в традиционной педагогике.

Среди них особое место занимают продуктивные методы, основанные на активном участии студента в учебном процессе. Активные методы обучения по типу коммуникаций между преподавателем и студентом относятся к группе "многие многим" и подразделяется на: ролевые игры, дискуссионные группы, форум, проектные группы и т.п. Не останавливаясь на характеристике этих методов, (их описание можно найти в отметим, что в дистанционном обучении они могут эффективно применяться даже в так называемых виртуальных классах, когда студенты разделены во времени и пространстве. Основой реализации этих методов являются телекоммуникационные сети и информационные технологии сетевого обучения.

Обучение должно быть личностно-ориентированным. Понятие "личностно-ориентированное обучение" предполагает дифференциацию и индивидуализацию обучения в зависимости от психолого-педагогических свойств обучаемого. Повышение эффективности учебного процесса возможно только на основе индивидуализации учебно-познавательной деятельности. Такое персонифицированное обучение в условиях массового спроса возможно только на основе высоких технологий обучения, построенных на компьютерных средствах и технологиях.

Очевидно, что новая компьютерная форма обучения может применяться как в стенах вуза, так и за его пределами. Совершенно ясно, что обучение с применением компьютерных технологий приводит в конечном счете к изменению парадигмы образования, ядром которой является индивидуализированное обучение в распределенной образовательной и коммуникативной среде. И в этом отношении понятие расстояния и времени теряет первичный смысл: становится не важным, где находится источник информации - в соседней комнате или за океаном.

Компьютерные программы учебного назначения[править]

Принципы создания электронных учебных средств

Обучение, основанное на компьютерных технологиях, в значительной степени базируется на технической инфраструктуре: компьютере (как инструменте для размещения и представления учебной информации) и компьютерных сетях (как средстве доступа к ней). Поэтому в качестве одного из принципов, которые необходимо учитывать при создании электронных курсов, является принцип распределенности учебного материала.

Информационные учебные ресурсы могут быть разделены на две группы: находящиеся непосредственно у обучаемого (локальные компоненты) и размещаемые на компьютерах учебного центра (сетевые компоненты). Способ размещения информации накладывает определенные требования на технологии создания ресурсов и доступа к ним.

Локальные компоненты включают в себя печатную продукцию, аудио- и видеозаписи на магнитной ленте и информацию на компьютерно читаемых носителях (дискетах, жестких и лазерных дисках). Компьютерные технологии подготовки печатной продукции в настоящее время широко распространены. Они позволяют автору самостоятельно подготовить и напечатать свой текст.

Технологии записи на магнитную ленту видео- и аудиоматериалов хорошо отработаны. Разработаны и методики их использования в учебном процессе.

Компьютерные обучающие программы используются в образовании как дополнительные учебные средства также достаточно давно. Однако при дистанционном обучении компьютер становится основным дидактическим инструментом и вместо разрозненных обучающих программ нужен цельный интерактивный курс, с достаточной полнотой представляющий всю учебную информацию. Принцип интерактивности учебного материала - второй важный принцип, который следует учитывать при разработке учебно-методического обеспечения дистанционного образования.

Большой объем информации требует использования соответствующего носителя. Хорошо отработанная и широко распространенная технология CD-ROM вполне подходит для мультимедиа курсов.??????????

Интерактивный мультимедиа курс дает возможность интегрировать различные среды представления информации - текст, статическую и динамическую графику, видео и аудио записи в единый комплекс, позволяющий обучаемому стать активным участником учебного процесса, поскольку выдача информации происходит в ответ на соответствующие его действия. Использование мультимедиа позволяет в максимальной степени учесть индивидуальные особенности восприятия информации, что чрезвычайно важно при опосредованной компьютером передаче учебной информации от преподавателя студенту. Таким образом, третий принцип, который следует учитывать при созданнии электронного курса - принцип мультимедийного представления учебной информации.

Для создания мультимедиа курсов используются инструментальные средства специализированного (авторские среды) или универсального (системы программирования) характера.

  • Первые рассчитаны на "программирование без программирования", т.е. программа создается автоматически авторской средой.
  • Для работы со вторыми необходимо знание языка программирования.

Появление современных систем визуального проектирования, таких как Visual Basic или Delphi, в значительной степени снимает различия между этими средствами, поскольку они позволяют разрабатывать интерфейс в интерактивном режиме. В то же время они не ограничивают свободу готовыми решениями.

Основой сетевых курсов являются информационно-коммуникационные технологии (ИКТ).

Телекоммуникационные технологии используются для доставки учебных материалов или организации контролируемого доступа к ним.

Для создания учебных материалов, предоставляемых в виде интернет-ресурсов, широко используются различные HTML-редакторы. Использование скриптовых языков позволяет сделать HTML-документ интерактивным и обеспечить передачу информации на сервер. Однако следует учесть, что наиболее распространенные браузеры Internet Explorer и Netscape Communicator используют разные версии языка HTML, поэтому при подготовке материалов не следует использовать команды разметки, не входящие во множество команд, поддерживаемых как тем, так и другим браузером. Следует также учесть, что язык HTML достаточно динамично развивается, так что документы, удовлетворяющие новому стандарту языка, могут некорректно возпроизводиться старыми версиями браузеров.

Принимая решение о предоставлении учебных материалов через Интернет, необходимо учитывать, что долгое ожидание реакции сервера, разрыв соединения и тому подобные ситуации, связанные с использованием on-line технологий при плохом качестве телекоммуникационных каналов, нарушают нормальный ход учебного процесса и негативно влияют на отношение учащегося к сетевому доступу.

Кроме того, использование браузеров для просмотра накладывает дополнительные ограничения на характер представления учебной информации.

Следует заметить, что системы программирования, используемые для создания локальных компонент, позволяют включать в мультимедиа курс и обращение к интернет-ресурсам, интегрируя сетевые и локальные ресурсы.

Любая новая форма обучения, в том числе и дистанционная, требует создания психолого-педагогической основы, без которой невозможно говорить об успешности и качестве учебного процесса. Поэтому следует выделить также ряд психологических принципов, влияющих на успешность и качество дистанционного обучения.

Особое место занимает проблема технологической реализации учета психо-физиологических особенностей человека при разработке курса. Успешность обучения главным образом связана с особенностями сенсорно-перцептивных процессов, определяющих восприятие информации и составляющих процессы, создающие возможность удерживать информацию в памяти и воспроизводить ее.

Современные технологии обучения, базирующиеся на повсеместном использовании вычислительной техники, потенциально обладают колоссальными возможностями. Однако полноценное применение компьютеризированных технологий требует серьезной проработки проблемы взаимодействия человека и технических средств. По сути дела, речь идет о формировании биотехнической системы, в которой некоторым образом распределены управляемые информационные потоки. Сложность такого комплекса при неоптимальном использовании психофизиологических возможностей обучающегося может быть чрезмерной. Это приводит, как показывает практика, к малой эффективности процесса обучения. Именно эта причина во многих случаях служит основанием для отказа от автоматизированных технологий в образовании. Объем информации, предлагаемый обучающимся за определенный промежуток времени, сильно варьируется в зависимости от их индивидуальных особенностей. Существует целый ряд формальных приемов, позволяющих выяснить имеющийся уровень знаний, однако опытные преподаватели "интуитивно" чувствуют настроение аудитории, ее контактность, готовность к восприятию материала и соответственно корректируют ход занятия. В этом одна из проблем автоматизированных обучающих систем - нет обратной связи, компьютер не может чувствовать эмоциональное состояние человека. Ситуация обостряется еще и тем, что восприятие новой информации имеет несколько фаз. Доза информации, перерабатываемая организмом за фиксированный промежуток времени, образует информационную нагрузку. Положительное или отрицательное воздействие на организм данной ему нагрузки зависит от соотношения ориентировочных и оборонительных реакций. Информационная нагрузка считается положительной, если, вызывая ориентировочные реакции, она в минимальной степени затрагивает оборонительный рефлекс. Очевидно, что достичь высокой эффективности процесса обучения можно только в том случае, когда не возникает информационной перегрузки.

Основная проблема на пути оптимизации обучения с точки зрения сохранности и развития адаптационных резервов - оценка и коррекция состояния человека в процессе получения новых знаний.

Отсюда следует четветый принцип, который следует учитывать при разработке электронного курса - принцип адаптивности к личностным особенностям обучаемого.

Несмотря на определяющую роль самостоятельной работы в обучении с применением компьютерных технологий, основными субъектами учебного процесса являются студент и преподаватель. Соучастие студента в познавательной деятельности наравне с преподавателем есть одно из условий качественного образования как в традиционной системе, так и в ДО. Поэтому основным требованием к технологиям дистанционного обучения является сохранение преимуществ очного обучения на расстоянии. Использование сформулированных выше принципов при разработке учебно-методического обеспечения позволяет в максимальной степени удовлетворить этим требованиям.

Цифровые образовательные ресурсы, их типология, требования к разработке.[править]

Содержание всех учебных изданий в комплексе отражает необходимый и достаточный уровень знаний и навыков, которыми должен овладеть выпускник вуза, получивший высшее профессиональное образование по данному направлению или специальности.

Содержание электронных средств учебного назначения должно быть адекватно ГОСам ВПО и современным технологиям обучения, учитывать необходимость активного использования компьютерной техники в учебном процессе. Учебный материал должен быть структурирован в ней таким образом, чтобы сформировать у обучаемого личный тезаурус научно-предметных знаний, развить навыки владения профессиональными приемами, методами и способами их применения.

Принципы классификации электронных средств учебного назначения

Электронные средства учебного назначения имеют многослойный характер. С одной стороны, по выполняемым функциям, их можно отнести к учебным изданиям и соответственно, использовать принципы классификации, используемые для учебной книги. С другой стороны, они принадлежат к категории электронных изданий и к ним могут быть применены принципы классификации электронных изданий. С третьей стороны, по технологии создания, они являются программным продуктом и к ним может быть применен Общероссийский классификатор продукции ОК 005-93.

Поэтому в основу классификации электронных средств учебного назначения положены общепринятые способы классификации как учебных, так и электронных изданий, и программных средств.

Исходя из описанных в современной литературе и общероссийских стандартах критериев, электронные средства учебного назначения следует различать:

  • по функциональному признаку, определяющему значение и место ОЭИ в учебном процессе;
  • по структуре;
  • по организации текста;
  • по характеру представляемой информации;
  • по форме изложения;
  • по целевому назначению;
  • по наличию печатного эквивалента;
  • по природе основной информации;
  • по технологии распространения;
  • по характеру взаимодействия пользователя и электронного издания.

В настоящее время утвердилась определенная типологическая модель системы учебных изданий для вузов, которая включает четыре группы изданий, дифференцированных по функциональному признаку, определяющему их значение и место в учебном процессе:

  • программно-методические (учебные планы и учебные программы);
  • учебно-методические (методические указания, руководства, содержащие материалы по методике преподавания учебной дисциплины, изучения курса, выполнению курсовых и дипломных работ);
  • обучающие (учебники, учебные пособия, тексты лекций, конспекты лекций);
  • вспомогательные (практикумы, сборники задач и упражнений, хрестоматии, книги для чтения).

Информационные технологии позволяют выделить по этому критерию пятую группу:

  • контролирующие (тестирующие программы, базы данных)

Электронные издания по структуре подразделяются на:

  • однотомное электронное издание - электронное издание, выпущенное на одном машиночитаемом носителе;
  • многотомное электронное издание - электронное издание, состоящее из двух или более пронумерованных частей, каждая из которых представлена на самостоятельном машиночитаемом носителе, представляющее собой единое целое по содержанию и оформлению;

электронная серия - серийное электронное издание, включающее совокупность томов, объединенных общностью замысла, тематики, целевым назначением, выходящих в однотипном оформлении.

Учебные электронные издания по организации текста подразделяются на моноиздания и сборникиКурсивное начертание.

Моноиздание включает одно произведение, а сборник - несколько произведений учебной литературы.

Учебник, учебное пособие, курс и конспект лекций могут выходить в свет только в виде моноизданий, а практикум, хрестоматия, книга для чтения - в виде сборников. Что касается учебных планов, учебных программ, методических указаний и руководств, заданий для практических занятий, то их выпускают преимущественно в виде моноизданий. Подобные издания усиливают активность студента, обеспечивают комплексность процесса овладения информацией.

По характеру представляемой информации можно выделить следующие устоявшиеся виды учебных изданий: учебный план, учебная программа, методические указания, методические руководства, программы практик, задания для практических занятий, учебник, учебное пособие, конспект лекций, курс лекций, практикум, хрестоматия, книга для чтения и др.

По форме изложения материала учебные издания могут быть разделены на следующие группы: • конвекционные учебные издания, которые реализует информационную функцию обучения; • программированные учебные издания, которые, по существу, и представляют собой в этой классификации электронные издания; • проблемные учебные издания, которые базируются на теории проблемного обучения и направлено на развитие логического мышления; • комбинированные, или универсальные учебные издания, которые содержат отдельные элементы перечисленных моделей.

По целевому назначению электронных средств учебного назначения могут быть разделены на следующие группы:

  • для школьников;
  • для бакалавров;
  • для дипломированных специалистов;
  • для магистров;
  • для взрослых.

Различия по целевому назначению вызваны различными дидактическими задачами, которые решаются при подготовке специалистов различного уровня. Так, подготовка бакалавров требует.

По наличию печатного эквивалента выделяются две группы электронных средств учебного назначения:

  • электронный аналог печатного учебного издания - электронное средство учебного назначения, в основном воспроизводящее соответствующее печатное издание (расположение текста на страницах, иллюстрации, ссылки, примечания и т.п.);
  • самостоятельное электронное средство учебного назначения - электронное издание, не имеющее печатных аналогов.

По природе основной информации выделяются:

  • текстовое (символьное) электронное издание - электронное издание, содержащее преимущественно текстовую информацию, представленную в форме, допускающей посимвольное обработку;
  • изобразительное электронное издание - электронное издание, содержащее преимущественно электронные образцы объектов, рассматриваемых как целостные графические сущности, представленные в форме, допускающей просмотр и печатное воспроизведение, но не допускающей посимвольной обработки;
  • звуковое электронное издание - электронное издание, содержащее цифровое представление звуковой информации в форме, допускающей ее прослушивание, но не предназначенной для печатного воспроизведения;
  • программный продукт - самостоятельное, отчуждаемое произведение, представляющее собой публикацию текста программы или программ на языке программирования или в виде исполняемого кода;
  • мультимедийное электронное издание - электронное издание, в котором информация различной природы присутствует равноправно и взаимосвязанно для решения определенных разработчиком задач, причем эта взаимосвязь обеспечена соответствующими программными средствами.

По технологии распространения можно выделить:

  • локальное электронное средство учебного назначения - электронное издание, предназначенное для локального использования и выпускающееся в виде определенного количества идентичных экземпляров (тиража) на переносимых машиночитаемых носителях;
  • сетевое электронное издание - электронное издание, доступное потенциально неограниченному кругу пользователей через телекоммуникационные сети;
  • электронное издание комбинированного распространения - электронное издание, которое может использоваться как в качестве локального, так и в качестве сетевого.

По характеру взаимодействия пользователя и электронного издания можно выделить две группы:

  • детерминированное электронное издание - электронное издание, параметры, содержание и способ взаимодействия с которым определены издателем и не могут быть изменяемы пользователем;
  • недетерминированное электронное издание - электронное издание, параметры, содержание и способ взаимодействия с которым прямо или косвенно устанавливаются пользователем в соответствии с его интересами, целью, уровнем подготовки и т.п. на основе информации и с помощью алгоритмов, определенных издателем.

Используя классификацию программных средств, представленную в общероссийском классификаторе продукции ОК 005-93 имеется отдельный подкласс 50 7000 - Прикладные программные средства учебного назначения. Он включает в себя педагогические, обучающие, контролирующие, демонстрационные, досуговые, вспомогательные программные средства, а также программные средства для тренажеров, для моделирования, для управления учебным процессом, для создания программ учебного назначения, для профориентации и профотбора, для коррекционного обучения детей с нарушениями развития.

Все представленные принципы классификации позволяют учесть отдельные характеристики электронных средств учебного назначения. Можно использовать и другие критерии классификации, однако, вне зависимости от назначения, методики использования или технологии реализации, основой любого дидактического средства является учебный материал изучаемой предметной области. Отбор этого материала (который осуществляется исходя из дидактических задач и методических принципов) никто, кроме преподавателя, провести не может. По этой причине компьютерный курс должен быть не конгломератом разнородных модулей, а цельной многокомпонентной системой, отражающей научные и методические взгляды автора

Электронные издания, электронные учебники, требования к их разработке.[править]

В ряду электронных средств учебного назначения особое значение имеют учебно-методические комплекты (УМК). Каждый УМК предназначен для оказания помощи в изучении и систематизации теоретических знаний, формирования практических навыков работы как в предметной области, так и в системе дистанционного образования или в традиционной образовательной системе с использованием информационных технологий. УМК содержит не только теоретический материал, но и практические задания, тесты, дающие возможность осуществления самоконтроля, и т.п. Создание УМК имеет особое значение, так как позволяет комплексно подходить к решению основных дидактических задач.

Учебно-методические комплекты могут быть представлены как мультимедиа курсы, каждый из которых представляет собой комплекс логически связанных структурированных дидактических единиц, представленных в цифровой и аналоговой форме, содержащий все компоненты учебного процесса.

Современный учебный мультимедиа курс - это не просто интерактивный текстовый (или даже гипертекстовый) материал, дополненный видео- и аудиоматериалами и представленный в электронном виде. Для того чтобы обеспечить максимальный эффект обучения, необходимо, чтобы учебная информация была представлена в различных формах и на различных носителях. В комплект курса рекомендуется включать видео- и аудиокассеты, а также печатные материалы. Это обусловлено не только техническими и экономическими соображениями (оцифрованное "живое" видео требует весьма больших объемов памяти, видеомагнитофон существенно доступнее по цене, чем мультимедиа-компьютер, работа с печатным материалом более привычна для учащихся), но и соображениями психологического характера. Наличие у учащегося ведущей сенсорной модальности (основного канала восприятия информации) приводит к тому, что одни легче усваивают видеоинформацию (визуалы), для других важную роль играет звук (аудиалы), третьим для закрепления информации необходима мышечная активность (кинестетики).

Мультимедиа курс является средством комплексного воздействия на обучающегося путем сочетания концептуальной, иллюстративной, справочной, тренажерной и контролирующей частей. Структура и пользовательский интерфейс этих частей курса должны обеспечить эффективную помощь при изучении материала.

Определяя таким образом мультимедиа курс, мы определяем и структуру учебно-методических комплектов, подготовка которых является наиболее важной для преподавателя задачей в системе открытого и дистанционного образования.

Основой УМК (мультимедиа курса) является его интерактивная часть, которая может быть реализована только на компьютере. В нее входят:

  • электронный учебник,
  • электронный справочник,
  • тренажерный комплекс (компьютерные модели, конструкторы и тренажеры),
  • задачник,
  • электронный лабораторный практикум,
  • компьютерная тестирующая система.

Данная структура может быть скорректирована с учетом специфики гуманитарных, естественнонаучных и физико-математических дисциплин.

Рассмотрим кратко назначение, состав и технологию создания интерактивных компонент, описанных в методическом пособии "Дистанционное образование и его технологии".

Электронный учебник предназначен для самостоятельного изучения теоретического материала курса и построен на гипертекстовой основе, позволяющей работать по индивидуальной образовательной траектории.

Компьютерный учебник содержит тщательно структурированный учебный материал, предоставляемый обучаемому в виде последовательности интерактивных кадров, содержащих не только текст, но и мультимедийные приложения. Гипертекстовая структура позволяет обучающемуся определить не только оптимальную траекторию изучения материала, но и удобный темп работы и способ изложения материала, соответствующий психофизиологическим особенностям его восприятия. В электронном учебнике может быть предусмотрена возможность протоколирования действий обучаемого для их дальнейшего анализа преподавателем.

Нелинейная организация учебного материала, многослойность и интерактивность каждого кадра, а также возможность протоколирования информации о выборе учащимся траектории обучения определяют специфику электронного учебника.

Электронный справочник позволяет обучаемому в любое время оперативно получить необходимую справочную информацию в компактной форме.

В электронный справочник включается информация как дублирующая, так и дополняющая материал учебника. Обычно электронный справочник представляет собой электронный список терминов, или используемых в курсе слов изучаемого иностранного языка, или имен цитируемых авторов и т.д. Каждая единица списка гиперактивна - ее активизация позволяет обратиться к гиперссылке, содержащей толкование термина, перевод и грамматические характеристики иностранного слова, энциклопедическое описание и т.д.

В электронный справочник обычно можно войти из любого раздела курса с помощью специальной кнопки в главном меню. Собственное меню справочника, как правило, представляет собой алфавит, оформленный в разных дизайнерских решениях. Активизация кнопки-буквы обеспечивает доступ к соответствующему фрагменту справочника.

В настоящее время наличие справочной системы является обязательным для любого УМК. При этом электронный справочник может быть представлен как самостоятельный элемент УМК или встроен в электронный учебник.

Компьютерные модели, конструкторы и тренажеры позволяют закрепить знания и получить навыки их практического применения в ситуациях, моделирующих реальные.

В отличие от вышеописанных компонент, компьютерные модели, как правило, не являются универсальными. Каждая из них рассчитана на моделирование достаточно узкого круга явлений. Основанные на математических моделях (которые содержат в себе управляющие параметры), компьютерные модели могут быть использованы не только для демонстрации трудно воспроизводимых в учебной обстановке явлений, но и для выяснения (в диалоговом режиме) влияния тех или иных параметров на изучаемые процессы и явления. Это позволяет использовать их в качестве имитаторов лабораторных установок, а также для отработки навыков управления моделируемыми процессами.

Компьютерные технологии позволяют не только работать с готовыми моделями объектов, но и производить их конструирование из отдельных элементов.

К тренажерам могут быть отнесены также и компьютерные задачники. Компьютерный задачник позволяет отработать приемы решения типовых задач, позволяющих наглядно связать теоретические знания с конкретными проблемами, на решение которых они могут быть направлены. Электронный лабораторный практикум позволяет имитировать процессы, протекающие в изучаемых реальных объектах, или смоделировать эксперимент, не осуществимый в реальных условиях. При этом тренажер имитирует не только реальную установку, но и объекты исследования и условия проведения эксперимента. Лабораторные тренажеры позволяют подобрать оптимальные для проведения эксперимента параметры, приобрести первоначальный опыт и навыки на подготовительном этапе, облегчить и ускорить работу с реальными экспериментальными установками и объектами. В качестве тренажера может использоваться и компьютерная тестирующая система, которая обеспечивает, с одной стороны, возможность самоконтроля для обучаемого, а с другой - принимает на себя рутинную часть текущего или итогового контроля. Компьютерная тестирующая система может представлять собой как отдельную программу, не допускающую модификации, так и универсальную программную оболочку, наполнение которой возлагается на преподавателя. В последнем случае в нее включается система подготовки тестов, облегчающая процесс их создания и модификацию (в простейшем случае это может быть текстовый редактор). Эффективность использования тестирующей системы существенно выше, если она позволяет накапливать и анализировать результаты тестирования. Тестирующая система может быть встроена в оболочку электронного учебника, но может существовать и как самостоятельный элемент УМК. В этом случае тестирующие программы по различным дисциплинам целесообразно объединять в единой базе данных. Представленные компоненты мультимедиа курса сами по себе не решают педагогических задач. Обучающая функция реализуется в мультимедиа курсе через педагогический сценарий, с помощью которого преподаватель выстраивает образовательные траектории. 4. Технология создания мультимедиа курса Процесс создания электронного курса можно разделить на четыре этапа: 1. проектирование курса; 2. подготовка материалов для курса; 3. компоновка материалов в единый программный комплекс. 4.1. Проектирование курса Проектирование электронного курса является основополагающим этапом. Именно на этой стадии, на основании соотнесения имеющихся средств и ресурсов с затратами на издание курса делается вывод о реальности проекта [17]. Начальным этапом проектирования мультимедиа курса является разработка педагогического сценария. Педагогический сценарий - это целенаправленная, личностно-ориентированная, методически выстроенная последовательность педагогических методов и технологий для достижения педагогических целей и приемов [18]. Педагогический сценарий курса дает представление о содержании и структуре учебного материала, о педагогических и информационных технологиях, используемых для организации учебного диалога, о методических принципах и приемах, на которых построен как учебный материал, так и система его сопровождения. При этом под педагогическими технологиями дистанционного обучения понимаются технологии педагогического общения, способы организации познавательной деятельности учащихся. Под информационными технологиями дистанционного обучения понимаются технологии создания, передачи и хранения учебных материалов, организации и сопровождения учебного процесса дистанционного обучения. Педагогический сценарий отражает авторское представление о содержательной стороне курса, о структуре мультимедиа курса, необходимого для его изучения.

Планирование педагогического сценария предполагает четкое видение автором образовательного пространства учебной дисциплины, его умение определить педагогические технологии в соответствии с особенностями целевых учебных групп, тщательное проектирование содержания учебной деятельности. Для решения этих задач на этапе проектирования преподаватель должен подготовить развернутую программу учебной дисциплины, подобрать учебный материал, составить электронный текст, который станет основой построения мультимедиа курса, и разработать методическое пособие по изучению курса. Подготовив все необходимые компоненты педагогического сценария, преподаватель должен определить наиболее эффективные траектории изучения курса с учетом индивидуальных особенностей восприятия материала, в зависимости от образовательного уровня учащихся, наличия или отсутствия базовых знаний в предметной области. Педагогический сценарий может быть представлен графически, что значительно облегчает организацию самостоятельной познавательной деятельности учащихся. На схеме представлен пример графической реализации педагогического сценария одного из разделов учебного курса "Государственные и муниципальные финансы" (автор - Шимширт Н.Д.) [19]. Структурная схема деятельности учащихся здесь предполагает возможность выбора как минимум пяти образовательных траекторий, что позволяет преподавателю решать различные педагогические задачи, а студентам - максимально эффективно построить самостоятельную работу над курсом с учетом имеющихся знаний по отдельным проблемам курса. Как правило, при разработке педагогического сценария для консультаций привлекаются специалисты: методисты, психологи, программисты. После разработки сценария определяются типы носителей, на которых будет размещаться курс: компакт-диски, видео- и аудиокассеты, книги. При этом следует учитывать и возможности потенциальных потребителей: каким техническим и программным обеспечением они располагают. Затем определяется набор технологий и инструментальных средств, необходимых для создания курса. Технологический сценарий - это описание информационных технологий, используемых для реализации педагогического сценария. В технологическом сценарии, как и в педагогическом, также реализуется авторский взгляд на содержание и структуру курса, его методические принципы и приемы его организации. Авторское представление о курсе отражает и пользовательский интерфейс - визуальное представление материала и приемы организации доступа к информации разного уровня. В сценарии необходимо выстроить материал по уровням, а также указать: o какие компоненты мультимедиа курса будут разработаны для наиболее эффективного обучения; o характер доступа к ним; o авторские пожелания по дизайну; o ключевые слова и средства навигации по материалу; o необходимые мультимедиа приложения. Участие преподавателя в составлении технологического сценария обеспечивает качественное решение педагогических задач, соединение в едином мультимедиа курсе педагогических и информационных образовательных технологий. В соответствии со сценарием технологических решений определяется фирма-разработчик (подготовка материалов для мультимедиа курса требует широкого спектра дорогостоящего оборудования, приобретать которое для однократного использования невыгодно, и участия специалистов по звуко- и видеозаписи, актеров, дизайнера, программистов) и выясняется общая стоимость проекта. После оценки затрат и принятия положительного решения о реализации проекта необходимо составить полный перечень задач и подробный график выполнения работ, начиная от подбора материалов и заканчивая прощальным вечером по случаю успешного завершения проекта. 4.2. Подготовка материалов для курса Различные компоненты курса, независимо от способа доступа и назначения, содержат в себе информацию различной природы: символьную (тексты, числа, таблицы), графическую (рисунки, чертежи, фотографии), мультимедиа (анимация, аудио- и видеозаписи). Подготовка различных компонент имеет как общие черты, связанные с характером информации, так и специфические, связанные с ее назначением. Однако, в отличие от традиционного учебного курса, исходный материал для которого находится на "бумажном носителе", т.е. в рукописном, машинописном или полиграфическом виде, материал для мультимедиа курса должен быть представлен в форме, которая делает возможной его обработку с помощью компьютера. Поскольку процессор компьютера может работать только с двоичными числами, то и вся информация должна быть переведена в цифровую форму (такой процесс называется двоичным кодированием или оцифровкой). В зависимости от вида информации (текст, графика, мультимедиа) меняется и технология оцифровки. 4.2.1.Подготовка текстов Подобранная автором первичная учебная информация, предоставленная в электронном виде, при подготовке мультимедиа курса должна быть скомпонована в соответствии с идеями автора в интерактивные учебные кадры так, чтобы, с одной стороны, обучаемый имел возможность сам выбирать темп и, в определенных пределах, последовательность изучения материала, а с другой стороны - процесс обучения оставался управляемым. Этот этап - построение детального технологического сценария курса - является наиболее ответственным, т.к. именно он позволяет найти оптимальное соединение педагогических задач и наиболее целесообразных для них технологических решений. Приступая к созданию технологического сценария мультимедиа курса, основанного на принципах гиперактивности и мультимедийности, следует учитывать, что в мультимедиа курсе вся учебная информация, благодаря гипертекстам, распределяется на нескольких содержательных уровнях [19]. Смысловые отношения между уровнями могут быть выстроены различными способами. Наиболее распространенный способ структурирования линейного учебного текста при переводе его на гипертекстовую основу предполагает размещение на 1-ом уровне - основной информации, на 2-ом уровне - дополнительной информации, содержащей разъяснения и дополнения, на 3-ем уровне - иллюстративного материала, на 4-ом уровне - справочного материала (при этом 4-ый уровень может отсутствовать, а справочный материал - быть переведен в структуру мультимедиа курса отдельным элементом). Более эффективным представляется такой способ структурирования линейного учебного текста, который ориентирован на различные способы учебно-познавательной деятельности. В этом случае 1-ый уровень может определить как иллюстративно-описательный, 2-ой уровень - репродуктивный, 3-ий уровень - творческий. Единицей представления материала становится кадр, который может содержать несколько гиперссылок, может быть дополнен графикой, анимацией и другими мультимедиа приложениями. Информация, размещенная на 1 кадре, должна быть цельной и представлять собой некоторый завершенный смысл. Исходя из смысловой ценности кадра, следует определять его внутреннюю структуру, ограничивать количество гиперссылок 2-го и 3-его уровней. Несколько кадров, составляющих 1 модуль (раздел) курса, организуются по принципу линейного текста с помощью специальных навигационных кнопок. Такой материал можно листать, подобно страницам книги. Наиболее эффективным является создание максимально подробной структуры курса, что дает возможность размесить материал каждого раздела на отдельном кадре. Однако на практике подобное структурирование учебного материала практически невозможно. Созданию покадровой структуры способствует реорганизация линейного текста в схемы, таблицы, графики, диаграммы, состоящие из гиперактивных элементов. При покадровом структурировании линейного учебного текста следует учитывать эргономические требования, позволяющие повысить эффективность учебной деятельности. Эти требования касаются всего объема информации, пространственных характеристик, оптимальных условий восприятия электронного текста. Требования к общей визуальной среде на экране монитора определяются необходимостью создания благоприятной визуальной среды. Степень ее комфортности определяется цветовыми характеристиками, пространственным размещением информации на экране монитора. Эргономические требования способствуют усилению эффективности обучения, активизации процессов восприятия информации и должны обязательно учитываться преподавателем при подготовке текстов для электронных учебников. 4.2.2.Подготовка статических иллюстраций Необходимость включения в электронные средства учебного назначения статических иллюстраций связана, прежде всего, с их методической ценностью. Использование наглядных материалов в процессе обучения способствует повышению уровня восприятия, формированию устойчивых ассоциативных зрительных образов, развитию творческих способностей обучаемых. Статические иллюстрации - рисунки, схемы, карты, репродукции, фотографии и т.п., сопровождающие текстовый материал, даже в их "классическом" понимании могут существенно облегчить восприятие учебной информации. Компьютерные технологии позволяют усилить эффекты использования наглядных материалов в учебном процессе. Так, в отличие от книги, где иллюстрации должны присутствовать всегда одновременно с текстом, в компьютерной версии они могут вызываться по мере необходимости с помощью соответствующих элементов пользовательского интерфейса. Следует заметить, что качество электронных иллюстраций во много раз превосходит качество книжных иллюстраций. Кроме того, компьютерная иллюстрация, как и компьютерный текст, может быть сделана интерактивной. Поэтому автор электронного курса испытывает гораздо меньше ограничений в изобразительных средствах. При подборе иллюстративного материала важно соблюдать стилевое единство видеоряда (особенно если используются материалы из разнородных источников) и избегать раздражающей пестроты. Не менее важно обеспечить и высокое качество иллюстраций. Компьютерные технологии обработки изображений позволяют существенно улучшить качество исходного материала. 4.2.3. Создание мультимедиа Для того чтобы обеспечить максимальный эффект обучения, необходимо учебную информацию представлять в различных формах. Этому способствует использование разнообразных мультимедиа приложений. Мультимедиа - это объединение нескольких средств представления информации в одной системе. Обычно под мультимедиа подразумевается объединение в компьютерной системе таких средств представления информации, как текст, звук, графика, мультипликация, видеоизображения и пространственное моделирование. Такое объединение средств обеспечивает качественно новый уровень восприятия информации: человек не просто пассивно созерцает, а активно участвует в происходящем. Программы с использованием средств мультимедиа многомодальны, т.е. они одновременно воздействуют на несколько органов чувств и поэтому вызывают повышенный интерес и внимание у аудитории. Содержание мультимедиа приложений продумывается автором еще на этапе создания педагогического сценария и конкретизируется при разработке технологического сценария. Если текст и статическая графика - традиционные средства представления учебной информации, имеющие многовековую историю, то опыт использования мультимедиа исчисляется годами, что усложняет для преподавателя подготовку материалов к электронному изданию. При подготовке мультимедиа курсов могут быть использованы следующие типы мультимедиа приложений. Анимация - динамичная графика, основанная на применении различных динамических визуальных эффектов (движущиеся картинки, выделение цветом, шрифтом отдельных элементов схем/таблиц и т.п.). Анимацию удобно использовать для моделирования опытов, для демонстрации работы органов речи при произнесении звуков изучаемого иностранного языка, для иллюстрации движения финансовых потоков на предприятии, при изучении различных динамических процессов. Аудиоприложение - аудиозапись, чаще всего представляющая собой небольшие монологические комментарии преподавателя к некоторым схемам, таблицам, иллюстрациям и т.д. При этом схемы и таблицы могут быть снабжены эффектом анимации (элемент схемы/таблицы, о котором говорит преподаватель, выделяется во время прослушивания текста). Аудиоприложения также могут использоваться для введения в курс иностранного языка элементов аудирования, представлять обучающемуся образцы произношения, давать возможность прослушивать учебные диалоги и тексты. Авторские аудиокомментарии позволяют придать материалу эмоциональную окраску, а иногда (если это педагогически обоснованно) и продублировать текст, подчеркивая его важность. Эффективным средством представления учебной информации может служить и слайд-шоу - видеоряд с синхронным звуковым сопровождением. Видеолекция - видеозапись лекции, читаемой автором курса. Методически целесообразным считается запись небольшой по объему лекции (не более 20 минут), тематика которой позволяет обучающимся познакомиться с курсом и его автором (вводная видеолекция), с наиболее сложными проблемами курса (тематическая видеолекция). Видеолекция активизирует "личностный" фактор в обучении, вводя образ преподавателя в арсенал учебных средств. 4.3.Компоновка материалов в единый программный комплекс Подобранная автором и переведенная в электронную форму первичная учебная информация (текст, графика и мультимедиа) должна быть скомпонована в соответствии с идеями автора в интерактивные учебные кадры так, чтобы, с одной стороны, обучаемый имел возможность сам выбирать темп и, в определенных пределах, последовательность изучения материала, а с другой стороны - процесс обучения оставался управляемым. Этот этап - построение технологического сценария курса - является наиболее ответственным. Компьютерный учебник можно рассматривать как сложный граф, узлами которого являются отдельные блоки учебной информации, а связи между блоками определяют возможные учебные траектории. Схематическое представление курса в виде графа может облегчить его кодирование и впоследствии изучение курса студентом. Как уже отмечалось выше, в сценарии реализуется взгляд автора на содержание и структуру курса, его методические принципы и приемы. Авторское представление о курсе отражает и пользовательский интерфейс - визуальное представление материала и организацию доступа к информации разного уровня. В результате кодирования педагогического сценария, т.е. объединения предметного материала и пользовательского интерфейса с помощью соответствующего инструментального средства программирования, порождаются соответствующие программные модули, с которыми и предстоит работать обучаемому. В зависимости от педагогических задач, на них возлагаемых, эти модули могут быть размещены либо непосредственно на компьютере ученика или сервере локальной сети периферийного центра (локальные компоненты), либо на сервере Центра ДО базового университета (удаленные компоненты). Место размещения и способ доступа к материалу в значительной степени определяют выбор инструментария кодирования.

Компьютерные средства обучения.[править]

Технология мультимедиа в образовании. Ее педагогические возможности.[править]

Учебно-познавательная деятельность осуществляется посредством следующих технологий:

  • педагогического общения преподавателя со студентом в аудитории или с использованием электронных средств связи;
  • педагогического общения тьютора со студентом в аудитории или с использованием электронных средств связи;
  • самостоятельной работы студента с учебными материалами.

Как правило, обучение осуществляется по индивидуальному календарному графику, составленному на основе индивидуального учебного плана при условии соблюдения образовательного стандарта. При обучении на основе мультимедиа курсов используются различные организационные формы и технологии, для осуществления которых необходимо организовать работу студентов (включая самостоятельную работу) в учебных аудиториях, в компьютерном классе, в классе ТСО, в библиотеке, в методическом кабинете и др.

Особенности мультимедиа курсов по образовательным отраслям

Все мультимедиа курсы должны быть адаптированы к основному профилю специальности.

Мультимедиа курсы по гуманитарным и социально-экономическим дисциплинам имеют специфику, связанную с особенностями гуманитарного знания и местом гуманитарных и социально-экономических дисциплин в структуре образовательных программ.

Основным учебно-методического обеспечения при изучении гуманитарных и социально-экономических дисциплин становится мультимедийный учебник, основанный на использовании гипертекста, видео- и аудиоприложений, анимации, большого количества иллюстративного материала.

Мультимедиа курсы по гуманитарным и социально-экономическим дисциплинам являются полифункциональными, так как ориентированы на различные категории обучающихся. Этим определяется многоуровневый модульный характер их структуры. Гипертекстовая структура электронных изданий позволяет дополнить базовый инвариантный учебный материал специализированными учебными блоками, связанными с различными предметными областями, в которых работают обучающиеся, и составляющими вариативную часть учебных дисциплин. Так, например, курс отечественной истории, предназначенный для студентов-физиков, может включать в себя раздел по истории науки и техники, для филологов - расширенный материал по истории культуры и т.д.

При создании мультимедиа курсов по гуманитарным и социально-экономическим дисциплинам широкие возможности открывает сеть Интернет. Специфика электронных изданий позволяет делать прямые ссылки на размещенные во всемирной сети ресурсы, расширяя тем самым доступ учащихся к информации и формируя основания поисковой учебной деятельности.

Мультимедиа курсы по гуманитарным и социально-экономическим дисциплинам в обязательном порядке должны создаваться как учебно-методические комплексы, включающие не только учебник, но и хрестоматию, практикум, словарь, тестирующую программу или банк контрольных вопросов и заданий. При этом важно, чтобы такие комплексы создавались одним коллективом авторов, т.к. разрозненность изданий, противоречивость их содержания затрудняют процесс овладения гуманитарными знаниями.

Инструментальные средства преподавателя, авторские системы (АОС)[править]

Информационные образовательные ресурсы сети Internet[править]

Возможности использования Internet-технологий в образовании[править]

Объединение в Internet сетей, основанных на различных платформах потребовало создания средств, способных учитывать этот фактор. Для представления информации в Internet был предложен язык гипертекстовой разметки HTML (Hyper Text Markup Language). HTML-документ представляет собой ASCII-текст (содержащий команды разметки, указывающие, где находится и в каком виде должна быть представлена информация), а следовательно должен одинаково восприниматься независимо от платформы. Учет специфики при этом возлагается на специальную программу Web-браузер, управляющую визуализацией документа на экране. Первые версии HTML (в настоящее время создана 4-я версия стандарта языка) обладали довольно ограниченными изобразительными средствами, однако в настоящее время ситуация существенно изменилась.

Богатые возможности HTML по представлению текстовой и графической информации, включение в него поддержки мультимедиа, возможность разграниченного и авторизованного доступа к документам делают его весьма привлекательным для предоставления удаленного доступа к образовательной информации средствами WWW. Определенным недостатком HTML с дидактической точки зрения являлась его слабая интерактивность. Однако современный стандарт HTML позволяют включать в текст HTML-документа программы-скрипты, написанные на языках Perl, VB Script, Java Script, обеспечивающие реакцию на действия пользователя.

При создании учебных материалов, предоставляемых в виде интернет-ресурсов, следует учитывать, что наиболее распространенные браузеры Microsoft Internet Explorer и Netscape Communicator поддерживают не полностью совпадающие наборы HTML-команд, поэтому не следует использовать команды разметки, не входящие в общее множество команд. Следует также учесть, что язык HTML достаточно динамично развивается, так что документы, удовлетворяющие последнему стандарту языка, могут некорректно воспроизводится старыми версиями браузеров.

Web-технология предполагает, что информация в форме HTML-документов и связанных с ними мультимедиа файлов находится на сервере; по запросу соответствующие файлы передаются на машину-клиент, где с помощью браузера (Internet Explorer и Communicator имеют версии для различных платформ) происходит интерпретация. Передача информации от клиента на сервер (для обеспечения интерактивности) обеспечивается скриптами.

Создание HTML-документов существенно упрощается при использовании средств визуального проектирования, автоматизирующих написание HTML-кода (т.е.реализующих те же принципы, что и авторские системы). Такие средства существуют как в виде отдельные приложений, так и в качестве компонент (в последних версиях) браузеров. Как отмечалось выше, языки высокого уровня позволяют разрабатывать приложения, работающие на конкретной платформе. Появление языка Java существенно изменило ситуацию. Концепция Java предполагает (вместо создания для каждой платформы своих компиляторов), создание виртуальных Java-машин, выполняющей независимый от платформы программный код. Таким образом обеспечивается межплатформенная переносимость приложений.

Реализация технологии клиент-сервер

Говоря о локальных компонентах, мы подразумевали, что они могут находиться как на локальном компьютере, так и на сервере локальной сети. При этом сервер используется для предоставления необходимых файлов локальным компьютерам средствами сетевой операционной системы. Таким образом, сеть используется как среда для передачи файлов, что приводит к увеличению нагрузки на сеть и снижению производительности. Это наиболее ярко проявляется при работе с базами данных (БД). Для обеспечения множественного доступа к БД была предложена технология клиент-сервер. В этой модели обработка данных разделена между сравнительно слабым компьютером-клиентом и мощным сервером. Все файловые операции выполняются непосредственно на сервере.

Среду клиент-сервер образуют две основных компоненты: интерфейсная часть (клиент) и прикладная часть (сервер). Функции клиента - обеспечение интерфейса пользователя, формирование запросов к серверу и отображение полученных с сервера данных. Функции сервера - хранение и управление данными. Обработка данных на сервере включает их сортировку, извлечение затребованной информации и отправку ее пользователю.

Для решения различных задач на основе общей базы данных необходимы различные интерфейсные части. Для их разработки могут быть использованы те же инструментальные средства, что и для создания локальных приложений - Visual Basic и Delphi. Использования средств визуального проектирования существенно ускоряет разработку.

В случае, когда нагрузка на сервер слишком высока, выход может дать создание географически распределенной системы серверов и соответствующая группировка пользователей. Обеспечение тождественности данных на всех серверах при этом обеспечивается с помощью механизма репликации, благодаря которому изменения, происшедшие с данными на одном сервере, автоматически производятся и на других.

Использование технологии клиент-сервер весьма перспективно для организации управления учебным процессом в системе ДО. В частности, используя документоориентированную корпоративную среду LotusNotes, можно реализовать значительную часть сетевых компонент мультимедиа курса, а также организовать мониторинг учебной деятельности студентов. Существенно, что после появления сервера LotusNotes/Domino в качестве клиента можно использовать стандартный браузер.

Технология клиент-сервер может быть применена и для предоставления учебного материала. При этом, в отличие от авторского мультимедиа курса, где учебная информация структурирована и выстроена преподавателем, обучаемому предоставляется хранилище данных и средства поиска в нем. Ясно, что методика обучения должна быть принципиально иной, поскольку студент становится уже не интерпретатором отобранной автором мультимедиа курса информации, но в его задачу включается поиск и отбор информации, установление внутренних связей. Реализацией технологий клиент-сервер можно в определенном смысле считать и поисковые машины Интернет.

Web – технологии в образовании.[править]

Особенности использование электронной почты в образовательном процессе.[править]

Педагогические возможности ИКТ в образовании.[править]

Инфокоммуникационные технологии и качество образования.[править]

Информатизация управления деятельностью образовательных учреждений.[править]

Педагогические возможности НИТ для изучения иностранных языков.[править]

Будущее мультимедийных систем.[править]

Понятие виртуальной лаборатории. Использование виртуальных лабораторий в образовательном процессе.[править]

Педагогические возможности технологий Веб 2.0[править]

ИПВКТВО[править]

Занятие 4.02.2010[править]

Технология мультимедиа

Мультимедиа (лат. Multum + Medium) — одновременное использование различных форм представления информации и ее обработки в едином объекте-контейнере.

Возможности

Мультимедийные презентации могут быть проведены человеком на сцене, показаны через проектор или же на другом локальном устройстве воспроизведения. Широковещательная трансляция презентации может быть как «живой», так и предварительно записанной. Широковещательная трансляция или запись могут быть основаны на аналоговых или же электронных технологиях хранения и передачи информации. Стоит отметить, что мультимедиа в онлайне может быть либо скачана на компьютер пользователя и воспроизведена каким-либо образом, либо воспроизведена напрямую из интернета при помощи технологий потоковой передачи данных. Мультимедиа, воспроизводимая при помощи технологий потоковой передачи данных может быть как «живая», так и предоставляемая по требованию.

Мультимедийные игры — такие игры, в которых игрок взаимодействует с виртуальной средой, построенной компьютером. Состояние виртуальной среды передается игроку при помощи различных способов передачи информации (аудиальный, визуальный, тактильный). В настоящее время все игры на компьютере или игровой приставке относятся к мультимедийным играм. Стоит отметить, что в такой тип игр можно играть как в одиночку на локальном компьютере или приставке, так и с другими игроками через локальную или глобальную сети.

Различные форматы мультимедиа данных возможно использовать для упрощения восприятия информации потребителем. Например, предоставить информацию не только в текстовом виде, но и проиллюстрировать ее аудиоданными или видеоклипом. Таким же образом современное искусство может представить повседневные, обыденные вещи в новом виде.

Компьютерные средства обучения

Средства обучения — это объекты, созданные человеком, а также предметы естественной природы, используемые в образовательном процессе в качестве носителей учебной информации и инструмента деятельности педагога и обучающихся для достижения поставленных целей обучения, воспитания и развития.

Типология средств обучения Общепринятая современная типология подразделяет средства обучения на следующие виды:

  1. Печатные (учебники и учебные пособия, книги для чтения, хрестоматии, рабочие тетради, атласы, раздаточный материал и т.д.)
  2. Электронные образовательные ресурсы (часто называемые образовательные мультимедиа мультимедийные учебники, сетевые образовательные ресурсы, мультимедийные универсальные энциклопедии и т.п.)
  3. Аудиовизуальные (слайды, слайд-фильмы, видеофильмы образовательные, учебные кинофильмы, учебные фильмы на цифровых носителях (Video-CD, DVD, BluRay. HDDVD и т.п.):
  4. Наглядные плоскостные (плакаты, карты настенные, иллюстрации настенные, магнитные доски)
  5. Демонстрационные (гербарии, муляжи, макеты, стенды, модели в разрезе, модели демонстрационные)
  6. Учебные приборы (компас, барометр, колбы, и т.д.)
  7. Тренажеры и спортивное оборудование (автотренажеры, гимнастическое оборудование, спортивные снаряды, мячи и т.п.)
  8. Учебная техника (автомобили, тракторы, и т.д.)

--Masha 09:08, 4 февраля 2010 (UTC)Ответить[ответить]

Информационная культура

Культура информационная - уровень информатизации, степень его освоения и качество использования человеком; владение средствами и методами информатики; составной частью информационной культуры является компьютерная грамотность. Информационная культура включает и библиотечно-библиографическую грамотность, и культуру чтения, но предполагает овладение человеком целым комплексом дополнительных знаний, умений и навыков: 1) знание того, что из себя представляет процесс информатизации вообще и особенности его осуществления в районе, где находится библиотека, регионе, Российской Федерации; 2) ориентирование в правовом поле информатизации, в проблемах авторского права, свободы слова, информационной безопасности личности и т. д.; 3) понимание характера и особенностей современных информационных ресурсов, отдельных документов, массивов документов в информационных системах (библиотеках, архивах, фондах, банках данных, других информационных системах); 4) представление о возможностях декодирования различных носителей информации, достоинствах и недостатках традиционных и электронных средств сбора, систематизации, хранения и поиска информации; 5) умение использовать современные информационные технологии, стремление постоянно повышать свою компьютерную грамотность.(13)

Информационная культура человека является частью общечеловеческой культуры, необходимым звеном образовательной деятельности как учителей, так и учащихся, качественной характеристикой их информационной деятельности в составе образовательной деятельности. Информационная культура выражается в наличии у человека комплекса знаний, умений, навыков и рефлексивных установок во взаимодействии с информационной средой. Информационная культура проявляется в интересе к информационной деятельности, в осознании ее важной роли в образовательных процессах, в осознанном выборе источников информации и владении алгоритмами их переработки, в комплексном использовании традиционных, электронных, сетевых и других информационных ресурсов, в осознании себя как носителя и распространителя информации, в активном информационном поведении.

Занятие 12.02.2010[править]

Психолого-педагогические основы информатизации обучения

В настоящее время уже доказана эффективность новых информационных технологий (НИТ) обучения школьников различным учебным предметам. Наиболее существенным достоинством новых информационных технологий является то, что их применение позволяет сделать процесс обучения личностно ориентированным, ставить и решать новые, нетрадиционные образовательные задачи (формирование и развитие исследовательских, информационных, коммуникативных и других умений учащихся, развитие их мышления и способностей, формирование модельных представлений и т.д.). Использование новых информационных технологий в обучении позволяет рассматривать школьника как центральную фигуру образовательного процесса и ведет к изменению стиля взаимоотношений между его субъектами. При этом учитель перестает быть основным источником информации и занимает позицию человека, организующего самостоятельную деятельность учащихся и управляющего ею. Его основная роль состоит теперь в постановке целей обучения, организации условий, необходимых для успешного решения образовательных задач. Таким образом, ученик учится, а учитель создает условия для учения, и авторитарная по своей сути классическая образовательная технология принуждения трансформируется в личностно-ориентированную. Применение средств новых информационных технологий в учебном процессе позволяет таким образом перестроить традиционную методическую систему обучения, что она становится полностью инновационной.

[1] Возможности современной компьютерной техники в значительной степени адекватны организационно – педагогическим и методическим потребностям школьного образования: 1) Вычислительные – быстрое и точное преобразование любых видов информации (числовой, текстовой, графической, звуковой и др.). 2) Комбинаторные - возможность запоминать, сохранять, структурировать, сортировать большие объемы информации, быстро находить необходимую информацию. 3) Графические - представление результатов своей работы в четкой наглядной форме (текстовой, звуковой, в виде рисунков и пр.). 4) Моделирующие - построение информационных моделей (в том числе и динамических) реальных объектов и явлений. Перечисленные возможности компьютера могут способствовать не только обеспечению первоначального становления личности ребенка, но и выявлению, развитию у него способностей, формированию умений и желания учиться.

Программированное обучение С целью систематического формирования и развития навыков самостоятельной познавательной деятельности в 50-е гг. в нашей отечественной дидактике стало внедряться программированное обучение. По форме программированное обучение представляет собой особый вид самостоятельной работы учащихся над специально переработанным учебным материалом. Самая типичная форма такого обучения состоит в том, например, что дается пять ответов на вопрос, из которых надо выбрать один правильный. Программированное обучение делится на два вида: линейное и разветвленное. Линейное – это такое программированное обучение, когда при неправильном выполнении задания (неправильно выбранные ответы) ученик должен повторить весь соответствующий материал и выполнить вновь это задание или подобное ему. При разветвленном (если задание не выполнено) ученику указывают на его ошибки и дают задание повторить именно те страницы и параграфы, которые приведут его к правильному ответу. Преимущество программированного обучения состоит в наличии постоянной обратной связи. Программированное обучение, также предполагает использование новых средств обучения: соответствующих учебных пособий, контролирующих и обучающих устройств, компьютеров и т.д. Благодаря поискам новых технологий обучения в последние годы, появилось так называемое модульное обучение, ориентированное на результат в развитии самостоятельной познавательной деятельности учащихся. «Именно модульное обучение интегрирует в себе все то прогрессивное, что накоплено в педагогической теории и практике». Оно как бы объединяет важнейшие характерные особенности всех предыдущих классических обучающих систем. Модульное обучение позволяет реализовать данный принцип, основанный на достижении конкретных результатов каждым учеником, усвоившим способы овладения учебным материалом, способы самоконтроля, на практике.

[2]

Линейное программирование Линейные программы рассчитаны на безошибочность шагов всех учащихся, т.е. должны соответствовать возможностям наиб, слабых из них. В силу этого коррекция программ не предусмотрена: все учащиеся получают одну и ту же последовательность кадров (заданий) и должны проделать одни и те же шаги, т.е. двигаться по одной и той же линии (отсюда назв. программ - линейные).

Бехевиористкая психология – основа линейных программ В соответствии с бихевиористской теорией обучающие программы должны решать задачи получения и закрепления правильной реакции. Для выработки правильной реакции используются принцип разбивки процесса на мелкие шаги и принцип системы подсказок. При разбивке процесса запрограммированное сложное поведение расчленяется на простейшие элементы (шаги), каждый из к-рых учащийся смог бы совершить безошибочно. При включении в обучающую программу системы подсказок требуемая реакция вначале даётся в готовом виде (макс, степень подсказки), затем с пропуском отд. элементов (затухающие подсказки), в конце обучения требуется совершенно самостоят, выполнение реакции (снятие подсказки). Примером может служить заучивание стихотворения: вначале четверостишие даётся полностью, затем - с пропуском одного слова, двух слов и целой строки. В конце заучивания ученик, получив вместо четверостишия 4 строчки многоточий, должен воспроизвести стихотворение самостоятельно. Для закрепления реакции используется принцип немедленного подкрепления (с помощью словесного поощрения, подачи образца, позволяющего убедиться в правильности ответа, и др.) каждого правильного шага, а также принцип мнрго-кратного повторения реакций.

Разветвленные программы

В получивших широкое распространение разветвлённых программах кроме осн. программы, рассчитанной на сильных учащихся, предусматриваются доп. программы (вспомогат. ветви), на одну из к-рых направляется ученик в случае затруднений. Разветвлённые программы обеспечивают индивидуализацию (адаптацию) обучения не только по темпу продвижения, но и по уровню трудности. Кроме того, эти программы открывают большие возможности для формирования рациональных видов позна-ват. деятельности, чем линейные, ограничивающие познават. деятельность в осн. восприятием и памятью.


Кроудеровская схема


Способ программирования, основанный на теории поэтапного формирования умственной деятельности

Другие психологические теории, лежащие в основе разработки компьютерных программ