Обсуждение участника:ChecherenkoDA

Содержимое страницы недоступно на других языках.
Материал из Викиверситета

Добро пожаловать в Викиверситет![править]

Иллюстрирование Википедии: Руководство по размещению файлов на Викискладе. После загрузки файлов на Викисклад их можно будет использовать в статьях Викиверситета.

Здравствуйте, и добро пожаловать в русскоязычную часть Викиверситета! Надеемся, Вы получите большое удовольствие от участия в проекте.

Постарайтесь вначале статьи обозначить цель Вашей работы. Укажите, является ли создаваемая Вами страница учебным курсом или исследовательской работой.

Если Вы хотите написать энциклопедическую статью, то для этого есть Википедия, см. Чем не является Викиверситет.

Ознакомьтесь, пожалуйста, с вики-разметкой и принципами размещения и именования статей.

Чтобы получать актуальную информацию о событиях, происходящих в Викиверситете, Вы можете установить шаблон {{Актуально}}, например, в самое начало своей страницы обсуждения.

Иллюстрации загружайте на Викисклад, предназначенный для хранения медиафайлов вики-проектов. Прочитайте, пожалуйста, брошюру об основах иллюстрирования статей в Википедии и работе на Викискладе. Загруженные файлы на Викисклад можно будет одинаково легко использовать в Википедии и в Викиверситете.

По всем вопросам смело обращайтесь на портал сообщества или к одному из администраторов. При этом, пожалуйста, подписывайтесь на страницах обсуждения (но не в статьях Викиверситета), используя четыре идущих подряд знака тильды (~~~~). И ещё раз — добро пожаловать! :-) вы можете убрать данный шаблон с вашей страницы обсуждения по собственному желанию


-- 11:58, 9 ноября 2011 (UTC)

ЗАНЯТИЕ: ЗВУКОВЫЕ КАРТЫ[править]

ЗВУКОВЫЕ карты, их стандарты[править]

Звуковая карта, или аудиокарта – внутреннее периферическое устройство компьютера, которое преобразует цифровой сигнал в аудиопоток, отправляемый на внешнюю аудиосистему. Так же звуковая карта может работать в качестве обратного инструмента – записывать сигнал с аудиовхода, преобразовывать его в цифровой код и сохранять на компьютере.

В настоящее время наиболее популярным решением является встраивание аудиокарты внутрь материнской платы. Это обеспечивает низкую себестоимость звуковой системы домашних персональных компьютеров. Поэтому практически все модели материнских плат, доступные в продаже, уже снабжены базовой аудио системой. Ее вполне хв атит для того, чтобы справиться со всеми задачами по воспроизведению и записи звука. Как минимум на любой звуковой карте есть разъемы для подключения внешней аудио системы и микрофона.

Стандарты звуковых карт

Стандартизация всех выпускаемых плат исключает головную боль совместимости устройств. Разработанный компанией Intel в 1997 г. стандарт AC`97 и его эволюционное продолжение HD Audio обязан для соблюдения всеми изготовителями, выпускающими свои продукты для широкого круга покупателей.

AC`97[править]

Стандарт AC`97 подразумевает, что звуковая карта физически состоит из двух компонентов. Первый отвечает за обработку цифрового представления звука и называется цифровой контроллер. Второй – это аудикодек, который выполняет кодирование и декодирование цифровых данных. Такие звуковые карты не занимаются обработкой трехмерного звука и дополнительного обсчета аудиопотоков, поскольку большинству пользователей этого не нужно. Поэтому встроенные звуковые платы так прочно вошли в стандартную комплектацию материнских плат.

Hight-Definition Audio[править]

Более продвинутый стандарт HD Audio подходит к обработке звука с новым прогрессивным алгоритмом, поэтому с помощью него возможно воспроизведение большего количества каналов с большим качеством звука. Эта спецификация поддерживает популярный DVD Audio формат и многоканальный звук форматов 5:1 и 7:1.

Из чего складывается качественный звук Разумеется, чтобы насладиться качественным звучанием одной дорогой звуковой карты недостаточно. Необходимо соблюдение как минимум трех условий для получения отличного результата.

Помимо самой звуковой карты необходима соответствующая многоканальная аудиосистема, желательно формата 5:1 или даже 7:1. Ведь получить трехмерный звук это одно, а воспроизвести его – другое. Обычные стереофонические колонки просто не передадут всей полноты и глубины звучания, поступающего от звуковой карты. Поэтому приобретение аудиокарты необходимо приурочить и к покупке качественной настольной аудиосистемы, если у вас такой еще нет.

Третье, немаловажное условие – это звуковая дорожка, а точнее качество ее кодирования. Если Вы планируете слушать на вашей дорогой аудиосистеме музыку, закодированную в mp3 файлы, то смиритесь с тем, что результат Вас разочарует. Дело в том, что звук, хранящийся на компьютере, сжимается с использованием различных кодеков. Это сокращает место на жестком диске для его хранения, и позволяет встраивать в различный мультимедийный контент – накладывать на видеоряд, презентации и т.д. Основной принцип сжатия звука – обрезание того, чего, по мнению кодека, человеческое ухо не слышит или слышит слабо. Поэтому из звукового ряда убираются все нюансы и мелочи, которые и придают ему глубину. Воспроизведение таких файлов на дорогой аудиосистеме даст тот же результат, что и проигрывание их на дешевых колонках. Вариантов тут не много – нужно покупать музыку на CD дисках, а видео на лицензионных DVD. На них звуковую дорожку не сжимают, чтобы освободить место под 5-10 фильмов на одном диске.

Основные характеристики звуковых карт[править]

Основные паpаметpы:

  • pазpядность,
  • максимальная частота дискpетизации,
  • количество каналов (моно или стеpео),
  • паpаметpы синтезатоpа,
  • pасшиpяемость,
  • совместимость.

Под pазpядностью каpты имеется в виду pазpядность цифpового пpедставления звука - 8 или 16 бит. 8-pазpядные каpты дают качество звука, близкое к телефонному; 16-pазpядные уже подходят под опpеделение "Hi-Fi" и теоpетически могут обеспечить студийное качество звучания, хотя пpактически это pеализуется очень pедко. Разpядность пpедставления звука не имеет никакой связи с pазpядностью системной шины для каpты, однако каpта для 32-pазpядной шины MCA, EISA, VLB или PCI будет pаботать с несколько меньшими накладными pасходами на запись/воспpоизведение оцифpованного звука, чем каpта для ISA.


Максимальная частота дискpетизации (оцифpовки) опpеделяет максимальную частоту записываемого/воспpоизводимого сигнала, котоpая пpимеpно pавна половине частоты дискpетизации. Для записи/воспpоизведения pечи может быть достаточно 6-8 кГц, для музыки сpеднего качества - 20-25 кГц, для высококачественного звучания необходимо 44 кГц и больше. В некотоpых каpтах можно повысить частоту дискpетизации ценой отказа от стеpеозвука: два канала по 22 кГц, либо один канал на 44 кГц.


Паpаметpы синтезатоpа опpеделяют возможности каpты в синтезе звука и музыки. Тип синтеза - FM или WT - опpеделяет вид звучания музыки: на FM-синтезатоpе инстpументы звучат очень бедно, со "звенящим" оттенком, имитация классических инстpументов весьма условна; на WT-синтезатоpе звучание более "живое", "сочное", классические инстpументы звучат естественно, а синтетические - более пpиятно, на хоpоших WT-синтезатоpах может даже создаться впечатление "живой игpы" или "слушания CD". Число голосов (polyphony) опpеделяет пpедельное количество элементаpных звуков, могущих звучать одновpеменно. Объем ПЗУ или ОЗУ WT-синтезатоpа говоpит о количестве pазличных инстpументов или качестве их звучания (ПЗУ на 4 Мб может содеpжать 500 инстpументов сpеднего качества или обычный, но хоpоший GM), но большой объем ПЗУ не означает автоматически хоpошего качества самплов, и наобоpот. Для собственного музыкального твоpчества большое значение имеют возможности синтезатоpа по обpаботке звука (огибающие, модуляция, фильтpование, наличие эффект-пpоцессоpа), а также возможность загpузки новых инстpументов.


Расшиpяемость опpеделяет возможности по подключению дополнительных устpойств, установке микpосхем, pасшиpению объема ПЗУ или ОЗУ и т.п. Hа многих каpтах есть 26-pазpядный внутpенний pазъем для подключения дочеpней платы, пpедставляющей собой дополнительный WT-синтезатоp. Пpактически на каждой каpте есть pазъем для подключения CD-ROM с интеpфейсом Sony, Mitsumi, Panasonic или IDE (сейчас популяpны в основном последние два; IDE-интеpфейс многих каpт допускает подключение винчестеpа), бывают pазъемы цифpового выхода (SPDIF) для подключения к студийному обоpудованию, pазъемы для подключения модема и дpугие. Hекотоpые каpты допускают установку DSP и дополнительной памяти для самплов WT-синтезатоpа.


Под совместимостью сейчас чаще всего понимается совместимость с моделями Sound Blaster - обычно SB Pro и SB 16 (последняя - только для каpт пpоизводства Creative и каpт на микpосхеме Creative Vibra 16). Совместимость с SB Pro подpазумевает совместимость и с AdLib - одной из пеpвых звуковых каpт для IBM PC. Основные отличия SB 16 от SB Pro: SB Pro - 8-pазpядная каpта, допускает запись/воспpоизведение одного канала с частотой дискpетизации 44.1 кГц либо двух каналов с частотой 22.05 кГц; SB 16 - 16-pазpядная каpта, допускает запись/воспpоизведение с частотой до 44.1 кГц, имеет автоматическую pегулиpовку уpовня с микpофона и пpогpаммную pегулиpовку тембpа. Обе каpты имеют стеpеофонический FM-синтезатоp (OPL3). Многие SB Pro-совместимые каpты на самом деле 16-pазpядные, но большинство пpогpамм использует их только в 8-pазpядном pежиме SB Pro.


Совместимость каpты с Windows Sound System понимается двояко: пpогpаммная - возможность pаботы под упpавлением собственных дpайвеpов в 16-pазpядном pежиме на 48 кГц, аппаpатная - возможность настpойки на стандаpтные для WSS паpаметpы (поpт 530, IRQ 10 и т.п.).


PNP карты отличаются от обычных пpежде всего способом настpойки адpесов поpтов, линий IRq и каналов DMA. Hа обычных каpтах эти паpаметpы задаются либо жестко, либо пеpемычками, либо записываются в EEPROM (Electrically Erasable Programmable Read Only Memory - электpически pепpогpаммиpуемое постоянное запоминающее устpойство, ЭРПЗУ). В PnP-каpтах они устанавливаются пpи инициализации диспетчеpом PnP; это может быть PnP BIOS, специальная утилита для конфигуpации или дpайвеp с поддеpжкой PnP. До этой инициализации PnP-каpта "не видна" пpоцессоpу, и обычные пpогpаммы не смогут с нею pаботать.


Кpоме этого, PnP-каpта часто пpедставляет собой новый ваpиант обычной каpты, поэтому может довольно сильно отличаться от нее своими возможнстями и хаpактеpистиками.

Музыкальный синтезатор[править]

Синтеза́тор — электронный музыкальный инструмент, создающий (синтезирующий) звук при помощи одного или нескольких генераторов звуковых волн. Требуемое звучание достигается за счёт изменения свойств электрического сигнала (в аналоговых синтезаторах) или же методом настройки параметров центрального процессора (в цифровых синтезаторах). Синтезатор, выполненный в виде корпуса с клавиатурой, называется клавишным синтезатором. Синтезатор в виде корпуса без клавиатуры называется синтезаторным модулем и управляется от MIDI-клавиатуры или другого устройства, например, MIDI-гитары. В случае, если клавишный синтезатор оборудован встроенным секвенсором, он называется рабочей станцией. Синтезатор в виде компьютерной программы, использующей универсальную звуковую плату для озвучивания и стандартные средства ввода-вывода (компьютерные клавиатуру, мышь, монитор), называется программным синтезатором


Типы синтезаторов: В зависимости от способа генерации звуковых волн и их преобразования синтез звука можно классифицировать следующим образом:

  • Вычитающий

Вычитающий (субтрактивный) синтез, в котором исходная волна произвольной формы изменяет тембральную окраску при прохождении через разнообразные фильтры, генераторы огибающих, процессоры эффектов и т. д. Как подмножество данный тип синтеза широко применяется практически во всех современных моделях синтезаторов.


  • Операторный

Операторный (англ. Frequency Modulation, FM) синтез, в котором происходит взаимодействие (частотная модуляция и суммирование) нескольких волн простой формы. Каждая волна вместе со своими характеристиками называется оператором, определённая конфигурация операторов составляет алгоритм. Чем большее количество операторов использовано в конструкции синтезатора, тем богаче становится звучание инструмента. Например, популярный по сей день синтезатор Yamaha DX7 (1983 год выпуска) обладает 6 операторами, для коммутирования которых служат 32 различных алгоритма.


  • Физический

Физический синтез, в котором за счёт использования мощных процессоров производится моделирование реальных физических процессов, протекающих в музыкальных инструментах того или иного типа. Например, для духовых свистковых инструментов типа флейты параметрами будут длина, профиль и диаметр трубы, скорость воздушного потока, материал корпуса; для струнных инструментов — размер корпуса, материал, длина и натяжение струн и т. д. Физический синтез используют такие инструменты, как Yamaha VL-1, Korg OASYS, Alesis Fusion и т. д.


  • Волновой

(Wavetable, PCM) синтез, в котором звук создаётся за счёт воспроизведения записанных ранее в память инструмента фрагментов звучания реальных музыкальных инструментов (семплов и мультисемплов). Самый известный синтезатор в этой группе — Waldorf Wave, также прославившийся, как самый дорогой в мире синтезатор. [править] ГибридныйГибридный синтез, в котором применяется та или иная комбинация различных способов синтеза звука, например «суммирующий + вычитающий», «волновой + вычитающий», «операторный + вычитающий» и т. д. Большинство современных инструментов создаётся именно на основе гибридного синтеза, так как он обладает очень мощными средствами для варьирования тембра в самых широких пределах.

  • Ре-синтез

(Re-synthesis), где записанные в память синтезатора реальные волновые формы при помощи крайне сложных вычислений анализируются и преобразуются в цифровые модели с выделением определенного пакета управляемых «характеристик». Каждый модуль подобного синтезатора называется «ресинатором» (resynator). Для управления звуком в реальном времени используется как прямое управление выделенными параметрами одного ресинатора, так и «связывание» между собой пары параметров разных ресинаторов (например, «дыхание» флейтоподобного тембра и вибрато тембра в духе скрипки). Таким образом создаются очень сложные и одновременно легко управляемые тембровые конфигурации. Единственный на сегодняшний день синтезатор подобного типа — Hartmann Neuron

ЗАНЯТИЕ: ПЛОТТЕРЫ[править]

Устройство, принцип работы плоттеров[править]

ПЛОТТЕР, или графопостроитель, — широкоформатное устройство для вывода на бумагу широкоформатных изображений — чертежей, графиков и т. п.

Графопострои́тель (от греч. γράφω), пло́ттер — устройство для автоматического вычерчивания с большой точностью рисунков, схем, сложных чертежей, карт и другой графической информации на бумаге размером до A0 или кальке.

Принцип действия плоттера такой же, как и у струйного принтера.

Графопостроители рисуют изображения с помощью пера (пишущего блока).


Связь с компьютером графопостроители, как правило, осуществляют через последовательный, параллельный, SCSI-интерфейс и Ethernet (в последнем случае подключение к конкретному компьютеру не требуется, плоттер имеет собственный IP-адрес и, будучи включенным, доступен всем машинам в локальной сети). Некоторые модели графопостроителей оснащаются встроенным буфером (1 Мбайт и более).


Первые плоттеры (например Calcomp 565 из 1959) работали на принципе передвижения бумаги с помощью ролика, обеспечивая тем самым координату X, а Y обеспечивалась движением пера. Другой подход (воплощённый в Computervision’s Interact I, первая CAD система) представлял собой модернизированный пантограф, управляемый вычислительной машиной и имеющий шариковое перо в качестве рисующего элемента. Недостаток этого метода заключался в том, что требовалось пространство, соответствующее расчерчиваемой области. Но достоинством этого метода, вытекающим из его недостатка, является легко повышаемая точность позиционирования пера и соответственно точность самого рисунка, наносимого на бумагу. Позже это устройство было дополнено специальным кассетным держателем, который мог компоноваться перьями разной толщины и цвета.

Hewlett Packard и Tektronix в конце 1970-х представили планшетные плоттеры со стандартным размером с рабочий стол. В 1980-х была выпущена меньшая по размерам и более лёгкая модель HP 7470, использующая инновационную технологию «зернистого колеса» для перемещения бумаги. Эти небольшие плоттеры бытового назначения стали популярны в деловых приложениях. Но из-за их низкой производительности они были практически бесполезны для печати общего назначения. С широким распространением струйных и лазерных принтеров с высокой разрешающей способностью, удешевлением компьютерной памяти и скоростью обработки растровых цветных изображений, графопостроители с пером практически исчезли из обихода.


Назначение графопостроителей — высококачественное документирование чертёжно-графической информации.

Области применения плоттеров[править]

Плоттеры — устройства для широкоформатной печати, которые способны печатать графическую информацию различного назначения на носителях большого размера, изготовленных из материалов разного типа.

Области применения плоттеров можно условно разделить на несколько направлений, в зависимости от типа печатной продукции, которая изготавливается с их использованием, а требования, которые предъявляются к печатной продукции каждого направления будут определять критерии выбора конкретной модели плоттера.

Автоматизированное проектирование, архитектурно-строительное проектирование, САПР/ CAD/AEC, ГИС

Печать чертежей — самая первая задача, для решения которой стали использовать широкоформатные печатающие устройства: графопостроители и плоттеры. Для качественной печати чертежа требуются соответствие плоттера следующим параметрам:

— высокое разрешение плоттера — для печати линий различной толщины и стиля, возможность печати мелких элементов чертежа;

— работа с бумагой различной толщины и фактуры — например, для печати чертежей на кальке и на ватмане;

— соответствие ширины рабочего поля размеру чертежа, в случае необходимости возможность рулонной подачи бумаги;

— возможность полноцветной или монохромной печати;

— точность.

Изготовление наружной и внутренней рекламы

С развитием полиграфии и расширением возможностей новых моделей плоттеров, они нашли свое применение в изготовлении наружных и внутренних рекламных материалов. Требования, которые применяются к рекламной продукции значительно выше, чем требования к чертежам, особенно в части, касающейся их эксплуатационных характеристик. Широкий ассортимент рекламной продукции требует больших возможностей от оборудования по сравнению с печатью графического материала:

— печать на материалах различного типа: пластике, пленке, холсте, стекле и других типах натуральных и синтетических поверхностей;

— использование чернил, стойких к атмосферным осадкам и УФ-излучению;

— низкую стоимость печати;

— наличие авторизованной службы технической поддержки, которая сможет произвести настройку и ремонт плоттера.

Важность каждого показателя имеет разное значение в зависимости от задач, которые будут решаться при помощи плоттера: так, при печати чертежей экономичность не будет иметь такого значения, как при печати полноцветных плакатов, а ремонт плоттеров в минимально сжатые сроки для рекламных агентств критичнее, чем, например, для научно-исследовательских лабораторий.

По этой причине понимание при покупке целевого назначения плоттера — основа правильного выбора.

Модели и их основные технические характеристики[править]

ПОПУЛЯРНЫЕ МОДЕЛИ ПЛОТТЕРОВ.

Перьевые плоттеры CalComp – недорогие, надежные и точные Серия DesignMate- самые распространенные в мире перьевые плоттеры. Приведем технические характеристики моделей этой серии:

Модели :

  • 3024 S , ширина листа А1, размер стандартного буфера 30 Кбайт, последовательный интерфейс
  • 3024М , ширина листа А1, размер стандартного буфера 1 Мбайт, параллельный интерфейс
  • 3036S ширина листа А0, размер стандартного буфера 30 Кбайт, последовательный интерфейс
  • 3036М ширина листа А0, размер стандартного буфера 1 Мбайт, параллельный интерфейс


Размер и вес :

  • 3024 ( S и M) без подставки 102 * 28 * 28 см, 25 кг , с подставкой 102 * 51 * 103 см, 27.3 кг
  • 3036 ( S и M) с подставкой 130 * 61 * 130 см, 32 кг


Платформы: РС ( DOS, Windows, Macintosh)

Разрешение : 0.0125 мм

Точность: 0.254 мм или 0.1% от перемещения , в зависимости от того, какая величина больше

Повторяемость : максимальное отклонение для одного пера 0.1 мм

Интерфейс: RS232C, Centronics ( для S – опция)

Форматы данных :

  • CalComp PCI / 907, HPGL, HPGL/2
  • Драйверы AutoCAD ADI, Windows и PCI/907


Максимальный размер чертежа ;

  • 3024 : 600 * 876 mm
  • 3036: 889 * 1206 mm


Максимальный размер носителя :

  • 3024 : 625 * 125 mm
  • 3036 : 914 * 1625 mm


Стандартные возможности :

  • автоматическое определение размеров листа
  • скорость рисования автоматически либо устанавливается пользователем


Потребляемая электроэнергия: 320 В / 50 Гц, ток 0,25 А , мощность 3024 : 20 Вт , 3036: 32 Вт

Внешний адаптер Ethernet

16 Мбайт памяти

Подставка и корзина, сетевой кабель

Опции: 2 слота для установки дополнительной памяти SIMM следующих видов :

4 Мбайт, 8 Мбайт, 16 ил 32 Мбайт

Качество печати : 360 dpi в цветном режиме , 720 dpi в черно-белом режиме

Производительность : А1 в монохромном режиме < 2 минут. А1 в цветном режиме < 3 минут


ЗАНЯТИЕ: МОДЕМЫ[править]

Принципы дистанционной передачи информации[править]

Дистанционная передача данных является предпосылкой для полной интеграции информационных систем не только в масштабе одной страны, но и в международном.

До сих пор широко распространенным способом реализации дистанционной передачи данных является применение сетей общего пользования, которые эксплуатируются почтой и обычно покрывают всю территорию страны.

Как известно, данные в компьютере представлены в цифровой форме - закодированные в виде нулей и единиц, которым физически соответствует низкий или высокий уровень напряжения. Телефонная же сеть рассчитана на передачу речевых сообщений, представляемых в форме аналоговых электрических сигналов, поэтому непосредственная передача цифровой информации через телефонную сеть невозможна.

Итак, для преобразования форм представления информации необходимо некоторое устройство включаемое между компьютером и телефонной линией. Такое устройство называют модемом (сокращение от МОДулятор-ДЕМодулятор).

В общих чертах, связь через модем работает следующим образом: Пусть два компьютера соединены через модемы друг с другом по телефонной линии. Тогда поток данных из первого компьютера в цифровой форме поступает в модем первого компьютера, где преобразуется в аналоговую форму, пригодную для передачи по телефонному каналу. С выхода первого модема преобразованные в аналоговую форму данные попадают в телефонную линию.

Процесс преобразования данных из цифровой в аналоговую форму называется модуляцией.

В свою очередь, аналоговый сигнал, попав из телефонной линии на вход модема второго компьютера, преобразуется в цифровой поток данных, который принимается вторым компьютером.

Процесс преобразования данных из аналоговой формы в цифровую называется демодуляцией.

Таким образом, основное назначение модема - преобразование данных из цифровой формы в аналоговую, пригодную для передачи по телефонному каналу и наоборот из аналоговой в цифровую, воспринимаемую компьютером. Модемы по способу подключения к телефонному каналу делятся на акустические и с непосредственным подключением


Технические средства передачи информации[править]

Для передачи и распространения электронных данных используются различные средства и системы связи и телекоммуникации.

Приведем виды связи и используемые в них виды информации. Это:

  • почтовая (буквенно-цифровая и графическая информация),
  • телефонная (передача речи (включая буквенно-цифровые данные),
  • телеграфная (буквенно-цифровые сообщения),
  • факсимильная (буквенно-цифровая и графическая информация),
  • радио и радиорелейная (речевая, буквенно-цифровая и графическая информация),
  • спутниковая связь (тоже и видоинформация).

Связь в организации подразделяется на:

  • проводную и беспроводную,
  • внутреннюю (местную) и внешнюю,
  • симплексную, дуплексную и полудуплексную.

Дуплексный режим – это когда можно одновременно говорить и слышать собеседника. Полудуплексная передача (Half-Duplex) - метод двунаправленной передачи данных (в двух направлениях по одному каналу), при котором в каждый момент времени информация может передаваться только в одну сторону. Это двухчастотный симплекс, или полудуплекс. С точки зрения конечного пользователя он эквивалентен симплексу. Симплексный режим – это когда абоненты говорят между собой по очереди.

Линия связи – физические провода или кабели, соединяющие пункты (узлы) связи между собой, а абонентов – с ближайшими узлами.

Каналы связи образуется различным образом. Канал может создаваться на время соединения двух абонентов телефонной или радиосвязи и проведения между ними сеанса голосовой связи. В радиосвязи этот канал может представлять среду передачи данных, в которой одновременно может работать несколько абонентов, а также в ней может одновременно осуществляться несколько сеансов связи.


Кабели связи

Витая пара – изолированные проводники, попарно свитые между собой для уменьшения наводок между ними. Существует пять категорий витых пар: первая и вторая используются при низкоскоростной передаче данных; третья, четвертая и пятая – при скоростях передачи, до 16, 25 и 155 Мбит/с.


Коаксиальный кабель – медный проводник внутри цилиндрической экранирующей защитной оболочки свитой из тонких медных проводников, изолирован-ной от проводника диэлектриком. Скорость передачи до 300 Мбит/с. Значительная стоимость и сложность прокладки ограничивают его использование. Волновое сопротивление кабеля (отношение между амплитудами падающих волн напряжения и тока) составляет 50 Ом.

Оптоволоконный кабель состоит из прозрачных волокон оптически прозрачного материала (пластик, стекло, кварц) диаметром в несколько микрон, окружённых твердым заполнителем и помещённых в защитную оболочку. Коэффициент преломления этих материалов изменяется по диаметру таким образом, чтобы отклонившийся к краю луч возвращался обратно к центру. Передача информации осуществляется преобразованием электрических сигналов в световые с помощью, например, светодиода. При этом обеспечивается устойчивость к электромагнитным помехам и дальность до 40 км.

Телефонная связь – самый распространённый вид оперативно-управленческой связи. Официально появилась 14 февраля 1876 г., когда Александр Белл (США) запатентовал изобретение первого телефонного аппарата. Диапазон передаваемых звуковых сигналов по отечественным телефонным каналам составляет полосу частот 300 Гц–3,4 кГц.

Автоматическая телефонная связь образуется с помощью узлов коммутации, роль которых выполняют автоматические телефонные станции (АТС), и соединяющих эти узлы каналов (линий) связи. В совокупности с абонентскими линиями (телефонная линия от абонента к ближайшей АТС) она составляет телефонную сеть. Телефонная сеть имеет иерархическую структуру – оконечные (внутриучрежденческие, местные, районные и т.п.), городские, региональные (областные, краевые, республиканские), государственные и международные АТС. АТС соединяются между собой с помощью соединительных линий.

Телефонная станция (АТС) – здание с комплексом технических средств, предназначенных для коммутации телефонных каналов. На АТС производится соединение телефонных каналов абонентов на время их переговоров, а затем, по окончании пере-говоров, их разъединение. Современные ТС являются автоматическими техническими устройствами (в том числе – компьютерными).

Учрежденческие АТС, как правило, обеспечивают не только внутреннюю связь подразделений между собой с возможностью выхода во внешние сети, но и различные виды производственной связи (диспетчерскую, технологическую, громкоговорящую и директорскую) для связи директора с подчинёнными, проведения совещаний и конференций, а также функционирование систем охранной и пожарной сигнализации. Особенность современных АТС заключается в возможности использования компьютерных техники и технологии; организации соединения с радиотелефонами и пейджерами. В учреждениях для преодоления высоких уровней электромагнитных полей и перегородок используются радиотелефоны, образующие инфракрасные каналы связи.

Местные, внутриучрежденческие или офисные телефонные системы (УАТС или ЭАТС) широко применяются в организациях. Кроме большого набора сервисных возможностей они позволяют значительно сократить количество городских телефонных номеров, а также не загружать городские линии и АТС для ведения местных переговоров. Всё чаще находят себе применение мини- и микроофисные АТС.

Беспроводные каналы связи

Выделяют три основных типа беспроводных сетей:

  • радиосети свободного радиочастотного диапазона (сигнал передаётся сразу по нескольким частотам);
  • микроволновые сети (дальняя и спутниковая связь),
  • Инфракрасные сети (лазерные, передаваемые когерентными пучками света).

Современные беспроводные сети включают:

  • радиорелейную связь;
  • пейджинговую связь;
  • сотовую и ячеистую связь;
  • спутниковую связь;
  • телевидение и др.

Радиорелейная связь образуется путём строительства протяжённых линий с приёмо-передающими станциями и антеннами. Она обеспечивает узкополосную высокочастотную передачу данных на расстоянии между ближайшими антеннами в пределах прямой видимости (примерно 50 км). Скорость передачи данных в такой сети достигает 155 Мбит/с.

Транкинговая (англ. «trunking») или транковая (англ. «trunked») связь – (ствол, канал связи) - организуемый между двумя станциями или узлами сети канал связи для передачи информации группы пользователей в одном радиостволе (до 50 и более абонентов) с радиусом действия от 20 до 35, 70 и 100 км. Это профессиональная мобильная радиосвязь (ПМР) с автоматическим распределением ограниченного количества свободных каналов среди большого числа подвижных абонентов, позволяющая эффективно использовать частотные каналы, существенно повышая пропускную способность системы.

Сотовая радиотелефонная связь (сотовая подвижная связь, СПС) появилась в конце 1970-х годов. Её также называют мобильной. Промышленно системы СПС начинают эксплуатироваться в США с 1983 года, а в России – с 1993 года. Принцип организации СПС заключается в создании сети равноудалённых антенн с собственным радиооборудованием, каждая из которых обеспечивает вокруг себя зону устойчивой радиосвязи (англ. «cell» – сота).

В СПС используются методы разделения каналов по частоте (FDMA), времени (TDMA) и коду (CDMA). FDMA – частотное разделение, TDMA – мультидоступ с временным разделением каналов (используется в мобильные системах стандарта GSM), CDMA – кодовое разделение каналов (сигналы других пользователей воспринимаются абонентом такой сети как «белый шум», не мешающий работе приёмного устройства).

Другим способом беспроводной связи являются оптические линии связи (лазерная или оптическая связь), использующие топологию «точка–точка». Метод передачи звука с помощью модулированного пучка света предложен в начале XX в., а первые коммерческие устройства появились в середине 1980-х г. Эта связь имеет высокую пропускную способность и помехозащищенность, не требует разрешения на использование радиочастотного диапазона и др. Такие лазерные системы поддерживают любые протоколы передачи данных. Исходный сигнал модулируется оптическим лазерным излучателем и в виде узкого светового луча передатчиком и оптической системой линз передается в атмосферу.

На приемной стороне этот пучок света возбуждает фотодиод, регенерирующий модулированный сигнал.

Распространяясь в атмосфере лазерный луч подвергается воздействию микроскопических частиц пыли, паров и капель жидкости (в т.ч. осадков), температуры и др. Эти воздействия снижают дальность связи, составляющую от единиц, до 10–15 км. Расстояние зависит также и от мощности передающих устройств, которая колеблется от десятков до сотен мВт и обусловлена потребностью обеспечения устойчивой связи. Система обеспечивает достоверность связи более чем на 99,9%.

Спутниковая связь

Она образуется между специальными наземными станциями спутниковой связи и спутником с антеннами и приёмо-передающим оборудованием.

Она используется с целью циркулярного информационного обеспечения большого числа абонентов, как система широкополосного вещания (телевидение, звуковое вещание, передача газет), для организации виртуальных магистральных линий связи большой протяженности и др. Спутниковая связь позволяет охватить территории со слабо развитой инфраструктурой связи, расширить сферу и набор услуг, в т.ч. мультимедийных, радионавигационных и др.

Спутники располагаются на одной из трех орбит. Спутник, использующий геостационарную орбиту (англ. «Geostationary Earth Orbit», GEO), находится на высоте 36 тыс. км от Земли, и является неподвижным для наблюдателя. Он охватывает значительные области (территории) планеты. Средние орбиты (англ. «Mean Earth Orbit», MEO) обитания спутников характеризуются высотой 5–15 тыс. км, а на низких орбитах (англ. «Low Earth Orbit», LEO) высота размещения спутников не превышает 1,5 тыс. км. В этом случае они охватывают небольшие, локальные территории.

Станции спутниковой связи делятся на:

  • стационарные,
  • переносные (перевозимые)
  • портативные.

По видам передаваемых сигналов средства связи делят на аналоговые и цифровые или дискретные. К аналоговым относят непрерывные сигналы (электрические колебания), как правило, плавно меняющие амплитуду своих значений в течение сеанса передачи информации, например, речь в телефонном канале. При передаче любых сведений по сетям передачи данных их преобразуют в цифровую форму. Например, по телеграфу передаются закодированные последовательности импульсов. То же происходит при передаче информации между компьютерами по любым телекоммуникациям. Такие сигналы называются дискретными (цифровыми). При передаче информации из ЭВМ в качестве кода используют восьми разрядный двоичный код.

Международные стандарты модемов[править]

Для соединения двух модемов используется протокол — способ организации связи между двумя устройствами. Как люди для разговора друг с другом используют один язык и словарный запас, так и двум компьютерам или модемам для взаимодействия необходим общий протокол. Протокол определяет тип аналоговых данных, преобразуемых компьютером из цифровых данных при модемном соединении.

Стандарты протоколов обмена для модемов установили компания Bell Labs и Международный консультативный комитет CCITT. В 1990 году эта организация была переименована в ITU (International Telecommunications Union — Международный телекоммуникационный союз), однако протоколы, разработанные и принятые еще до переименования, до сих пор называются протоколами CCITT. Новые протоколы называются стандартами ITU-T. Большинство модемов, выпущенных в последние годы, соответствуют стандартам CCITT/ITU.

Комитет ITU со штаб-квартирой в Женеве, Швейцария, представляет собой Международный совет экспертов под эгидой ООН, отвечающий за разработку всемирных стандартов для обмена данными. В него входят представители как крупнейших компаний в области связи (например, AT&T), так и государственных организаций. Комитет ITU разрабатывает самые разные стандарты и протоколы, поэтому часто один и тот же модем, в зависимости от его возможностей и назначения, соответствует сразу нескольким стандартам, которые можно разделить на три группы.

Все современные модемы поддерживают следующие протоколы ITU:

  • ITU V.90 (модуляция);
  • ITU V.42 (коррекция ошибок);
  • ITU V.42bis (сжатие данных).

Старые модемы поддерживали множество стандартов модуляции, коррекции ошибок и сжатия, разработанных другими компаниями.

Большинство современных модемов также поддерживают сетевой протокол компании Microcom — MNP. Протоколы с коррекцией ошибок MNP10 и MNP10EC обеспечивают качественное соединение между проводной и беспроводной (сотовой) коммуникационной системами. К новым стандартам ITU также относятся стандарт модуляции V.92 и стандарт сжатия данных V.44. Все эти протоколы обсуждаются далее.


Термин ‘‘протокол’’ также используется для обозначения программных стандартов (например, TCP/IP), необходимых для взаимодействия двух удаленных систем.

Модемами управляют так называемые AT-команды, т.е. текстовые строки, отправляемые программным обеспечением модему для активизации функций последнего. Например, команда ATDT и следующий за ней номер телефона указывают модему на набор модемом указанного телефонного номера в тональном режиме. Использующие модем приложения обычно автоматически генерируют все необходимые АТ-команды, однако пользователь имеет возможность непосредственно управлять модемом с помощью терминального режима или команды DOS ECHO.

Набор АТ-команд используется практически во всех модемах, поэтому не обращайте внимания на этот фактор при выборе нужного устройства. Некоторые команды модема могут отличаться в зависимости от модели, производителя и специальных функций, однако основные АТ-команды универсальны для всех модемов.

Примечание

Список основных AT-команд можно найти в техническом руководстве, содержащемся на прилагаемом диске, однако наилучшим источником информации станет документация к конкретному модему. Хотя большинству пользователей никогда не придется вручную вводить АТ-команды, при использовании коммуникационных программ MS-DOS или некоторых утилит Windows может понадобиться ввод или изменение строки инициализации. Это набор АТ-команд, отправляемых модемом перед набором номера. Модем не будет работать с программой, передающей неправильные команды.

Принцип сжатия данных и коррекция ошибок[править]

Сжатие данных (англ. data compression) — алгоритмическое преобразование данных, производимое с целью уменьшения их объёма. Применяется для более рационального использования устройств хранения и передачи данных. Синонимы — упаковка данных, компрессия, сжимающее кодирование, кодирование источника. Обратная процедура называется восстановлением данных (распаковкой, декомпрессией).

Сжатие основано на устранении избыточности, содержащейся в исходных данных. Простейшим примером избыточности является повторение в тексте фрагментов (например, слов естественного или машинного языка). Подобная избыточность обычно устраняется заменой повторяющейся последовательности ссылкой на уже закодированный фрагмент с указанием его длины. Другой вид избыточности связан с тем, что некоторые значения в сжимаемых данных встречаются чаще других. Сокращение объёма данных достигается за счёт замены часто встречающихся данных короткими кодовыми словами, а редких — длинными (энтропийное кодирование). Сжатие данных, не обладающих свойством избыточности (например, случайный сигнал или шум, зашифрованные сообщения), принципиально невозможно без потерь.

Принципы сжатия данных

В основе любого способа сжатия лежит модель источника данных, или, точнее, модель избыточности. Иными словами, для сжатия данных используются некоторые априорные сведения о том, какого рода данные сжимаются. Не обладая такими сведениями об источнике, невозможно сделать никаких предположений о преобразовании, которое позволило бы уменьшить объём сообщения. Модель избыточности может быть статической, неизменной для всего сжимаемого сообщения, либо строиться или параметризоваться на этапе сжатия (и восстановления). Методы, позволяющие на основе входных данных изменять модель избыточности информации, называются адаптивными. Неадаптивными являются обычно узкоспециализированные алгоритмы, применяемые для работы с данными, обладающими хорошо определёнными и неизменными характеристиками. Подавляющая часть достаточно универсальных алгоритмов являются в той или иной мере адаптивными.

Все методы сжатия данных делятся на два основных класса:

  • Сжатие без потерь
  • Сжатие с потерями

При использовании сжатия без потерь возможно полное восстановление исходных данных, сжатие с потерями позволяет восстановить данные с искажениями, обычно несущественными с точки зрения дальнейшего использования восстановленных данных. Сжатие без потерь обычно используется для передачи и хранения текстовых данных, компьютерных программ, реже — для сокращения объёма аудио- и видеоданных, цифровых фотографий и т. п., в случаях, когда искажения недопустимы или нежелательны. Сжатие с потерями, обладающее значительно большей, чем сжатие без потерь, эффективностью, обычно применяется для сокращения объёма аудио- и видеоданных и цифровых фотографий в тех случаях, когда такое сокращение является приоритетным, а полное соответствие исходных и восстановленных данных не требуется.

Способы борьбы с ошибками

В процессе хранения данных и передачи информации по сетям связи неизбежно возникают ошибки. Контроль целостности данных и исправление ошибок — важные задачи на многих уровнях работы с информацией (в частности, физическом, канальном, транспортном уровнях сетевой модели OSI).

В системах связи возможны несколько стратегий борьбы с ошибками:

  • обнаружение ошибок в блоках данных и автоматический запрос повторной передачи повреждённых блоков — этот подход применяется в основном на канальном и транспортном уровнях;
  • обнаружение ошибок в блоках данных и отбрасывание повреждённых блоков — такой подход иногда применяется в системах потокового мультимедиа, где важна задержка передачи и нет времени на повторную передачу;
  • исправление ошибок (англ. forward error correction) применяется на физическом уровне.

Принцип факс-модемной связи[править]

Назначение факс-модемов По мере развития вычислительной техники многие фирмы стали выпускать платы расширения к персональным компьютерам (ПК), позволяющие ПК обмениваться факсимильными сообщениями с факсимильными аппаратами группы 3. Такая плата получила название факс-платы. Выпускались две их разновидности, позволяющие только передавать факсы или передавать и принимать их. Так как факс-платы основывались на тех же принципах передачи информации, что и обыкновенные модемы, то эти два устройства были объединены вместе и названы факс-модемом. Имея компьютер, сканер и печатающее устройство, можно не приобретать факсимильный аппарат. Достаточно дополнительно приобрести только факс-модем. Подключив его к компьютеру, получаем факс-машину, которая реализует все функции факсимильного аппарата.

Более того, комбинация компьютера в факс-модем имеет несколько преимуществ перед традиционными факсимильными аппаратами:

  • если в качестве печатающего устройства используется струйный или лазерный принтер, то качество принятых и выведенных на принтер факсимильных сообщений, как правило выше, чем при использовании обычных факсимильных аппаратов;
  • факсимильный аппарат не может выполнять другие функции, кроме передачи образов бумажных документов. Компьютер, сканер, факс-модем и принтер можно задействовать для решения других задач;
  • факс-модем позволяет передавать не только факсимильные сообщения, но и обычные файлы, работая как обычный модем;
  • установив факс-модем в локальной сети, можно обеспечить его совместное использование пользователями, что позволяет сэкономить денежные средства;
  • принятое компьютером факсимильное сообщение может быть передано на другую факс-машину без потери качества, так как компьютер передает принятый "электронный образ" документа.


Стандарты факс-модемов Экспериментальные образцы факсимильного оборудования появились в конце второй мировой войны, однако прошло еще много лет, прежде чем факсы получили всеобщее распространение. Первые факсимильные аппараты для компьютеров выпускались в виде отдельных устройств. Затем функции факсов были внедрены в модемах. В настоящее время практически все модемы соответствуют классу 3 стандарта ITU-T; это позволяет им отправлять данные к другим факсимильным аппаратам и получать их от них, что справедливо и для многофункциональных устройств аналогичного стандарта.

Если в компьютерной системе присутствуют сканер и факс-модем, можно воспользоваться встроенными в операционные системы Windows XP/Vista (правда, не во все редакции) функциями сканирования и работы с факсами. Многофункциональные устройства, как правило, поддерживают новую рекомендацию ITU-T.30E, определяющую требования к цветным факсимильным сообщениям. Факс-модемы, выпускаемые в настоящее время, не соответствуют этому стандарту; тем не менее можно загрузить бесплатное программное обеспечение (Impact Color Fax), созданное компанией HP и совместимое с большинством модемов.


Fax modem card

ЗАНЯТИЕ:ЛОКАЛЬНЫЕ СЕТИ[править]

Причины появления сетей ЭВМ[править]

Традиционные телефонные (проводные и беспроводные) сети связи, использующие аналоговые методы передачи, уже давно пережили свой столетний юбилей и сформировали свою устойчивую терминологию. Традиционные ЭВМ общего назначения недавно отметили свой пятидесятилетний юбилей и их терминология в основе своей также устоялась.

Системы цифровой телефонии и компьютерные сети, напротив, начали развиваться только с начала 60-х годов, когда ЭВМ уже вышли на рубеж третьего поколения. Наиболее важные моменты этого развития, как мне кажется, следующие:

  • 1962 - начало эксплуатации компанией Веll System первой коммерческой системы цифровой телефонии с каналами DS0 (64 кбит/с), мультиплексируемыми в канал Т1 (1.544 Мбит/с). Она положила начало созданию РDН иерархии;
  • 1963 - появление ЭВМ 3-го поколения - IВМ System-360 с байт-ориентированной структурой данных и “каналом” для приема/передачи и мультиплексирования низкоскоростных потоков данных, упрощающим схему организации сетей ЭВМ - послужило мощным стимулом и основой для развития первых компьютерных сетей;
  • 1970-72 - появление ЕС-ЭВМ (отечественного аналога IВМ System-360) и публикация отечественных стандартов на аппаратуру оконечного оборудования данных ООД, аппаратуру окончания канала данных АКД и систем передачи данных СПД - послужило стимулом и основой для создания отечественных компьютерных сетей;
  • 1975 - разработка системной сетевой архитектуры - SNА (IВМ), решившей ряд ключевых вопросов организации интерфейсов доступа в сеть и создания многомашинных сетевых комплексов - первая попытка стандартизации компьютерных сетевых решений;
  • 1981 - начало систематических работ по локальным сетям на основе пк;
  • 1983 - разработка базовой модели взаимодействия открытых систем - OSI (ВОС), открывшей возможности стандартизации и использования сетевого оборудования различных производителей в одной сети;
  • 1988 - публикация базовых стандартов ССITT на технологию синхронной цифровой иерархии - SDН, широко используемую в настоящее время для создания региональных, межрегиональных и глобальных телекоммуникационных сетей.


Этот перечень показывает, что развитие компьютерных сетей и цифровых сетей связи, начиная с 1962 г., происходит практически параллельно, причем так, что отечественная терминология в обоих случаях (в части передачи данных) остается достаточно единообразной (с приматом терминологии сетей связи) вплоть до 1986 года, в основном благодаря усилиям Госстандарта.

В то же время компьютерная техника и технология развивались существенно быстрее, чем технологии цифровых сетей связи, где методы импульсно-кодовой модуляции и плезиохронной цифровой иерархии были господствующими. В компьютерной технике не только происходила смена поколений, но и появлялись новые классы ЭВМ - мини-, микро-, супер-ЭВМ, мультипроцессорные и многомашинные комплексы ЭВМ. Можно с уверенностью сказать, что развитие компьютерной техники, ее внутренней архитектуры и технологии мультипроцессорной обработки явилось источником практически всех модельных решений, использованных позднее при развитии новых сетевых технологий. То же можно сказать и о развитии терминологии. В области компьютерной техники и технологии она охватывала существенно больший круг терминов, чем в технике цифровой связи.

Компьютерные сети в начале своего развития были в основном локальными и применялись практически исключительно для передачи данных. В результате общая терминология компьютерных сетей и сетевого оборудования мало отличалась от собственно компьютерной.

Сети цифровой связи, будучи в начале своего развития в основном глобальными телефонными сетями, использовались практически исключительно для передачи речи. В результате их терминология тяготела к традиционной терминологии аналоговых сетей связи и существенно отличалась от компьютерной. Например, использовались термины стык вместо интерфейс, октет вместо байт, цикл вместо кадр или фрейм, посылка вместо блок данных, уплотнение канала и группообразование вместо мультиплексирование и так далее.

Если бы два типа сетей развивались параллельно и не пересекались, то существование двух отличных друг от друга групп терминов, имеющих одинаковую этимологию, как-то могло бы быть оправдано. Однако необходимость передавать данные на большие расстояния привела к использованию уже существовавших телефонных сетей и созданию наложенных сетей, использующих технологии пакетной коммутации - Х.25, ретрансляции кадров - Frame Relay, режима асинхронной передачи - АТМ. Это позволило связывать локальные сети в единую глобальную сеть, формировать виртуальные сети и их сегменты, использовать компьютер в качестве терминального или транзитного узла сети путем простой установки интерфейсной карты в слот и связывать пользователей (абонентов сети) путем простого изменения адреса в маршрутизаторе. В результате произошло взаимопроникновение обеих типов сетей.

В этой ситуации различие терминологий стало объективным тормозом становления новых сетевых технологий, причем не "у них", разрабатывающих эти технологии, а у нас, в России, лишенной в эти годы не только достаточного количества ПК, для организации ЛВС, но и (что более важно) отечественной литературы по цифровым сетям. У нас, где один термин, например, frame в зависимости от технологии переводится специалистами то как цикл, то как кадр, то как посылка или пакет, но не как фрейм.

Отсутствие отечественной терминологии в области новых информационных технологий привело к широкому использованию русских “калек” и английской аббревиатуры в качестве новых сетевых терминов, что дало возможности по крайней мере избежать какого-бы то ни было непонимания в среде специалистов по локальным сетям. Сейчас можно сказать, что терминология традиционных локальных сетей (Тоken Вus - АRCnet, Еthernet, Тоken Ring и FDDI) практически устоялась. Аналогичная ситуация характерна и для других новых ЛВС технологий Switched Ethernet и Fast Ethernet.

Сейчас, когда специалисты по локальным сетям активно готовятся к использованию и даже начали использовать технологии АТМ и предполагают пользоваться технологией SDН для передачи потока АТМ ячеек на физическом уровне, вопрос об использовании единой терминологии в локальных и глобальных сетях стал как никогда актуальным.

Области применения сетей[править]

Лока́льная вычисли́тельная сеть (ЛВС, локальная сеть, сленг. локалка; англ. Local Area Network, LAN) — компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

Построение сети

Существует множество способов классификации сетей. Основным критерием классификации принято считать способ администрирования.

То есть в зависимости от того, как организована сеть и как она управляется, её можно отнести:

  • локальной,
  • распределённой,
  • городской
  • глобальной сети.


Управляет сетью или её сегментом сетевой администратор. В случае сложных сетей их права и обязанности строго распределены, ведётся документация и журналирование действий команды администраторов.

Компьютеры могут соединяться между собой, используя различные среды доступа:

  1. медные проводники (витая пара),
  2. оптические проводники (оптические кабели)
  3. через радиоканал (беспроводные технологии).


Проводные связи устанавливаются через Ethernet, беспроводные — через Wi-Fi, Bluetooth, GPRS и прочие средства. Отдельная локальная вычислительная сеть может иметь шлюзы с другими локальными сетями, а также быть частью глобальной вычислительной сети (например, Интернет) или иметь подключение к ней.

Чаще всего локальные сети построены на технологиях Ethernet или Wi-Fi. Следует отметить, что ранее использовались протоколы Frame Relay, Token ring, которые на сегодняшний день встречаются всё реже, их можно увидеть лишь в специализированных лабораториях, учебных заведениях и службах. Для построения простой локальной сети используются маршрутизаторы, коммутаторы, точки беспроводного доступа, беспроводные маршрутизаторы, модемы и сетевые адаптеры. Реже используются преобразователи (конвертеры) среды, усилители сигнала (повторители разного рода) и специальные антенны.

Маршрутизация в локальных сетях используется примитивная, если она вообще необходима. Чаще всего это статическая либо динамическая маршрутизация (основанная на протоколе RIP).

Иногда в локальной сети организуются рабочие группы — формальное объединение нескольких компьютеров в группу с единым названием.

Сетевой администратор — человек, ответственный за работу локальной сети или её части. В его обязанности входит обеспечение и контроль физической связи, настройка активного оборудования, настройка общего доступа и предопределённого круга программ, обеспечивающих стабильную работу сети.

Технологии локальных сетей реализуют, как правило, функции только двух нижних уровней модели OSI - физического и канального. Функциональности этих уровней достаточно для доставки кадров в пределах стандартных топологий, которые поддерживают LAN: звезда (общая шина), кольцо и дерево. Однако из этого не следует, что компьютеры, связанные в локальную сеть, не поддерживают протоколы уровней, расположенных выше канального. Эти протоколы также устанавливаются и работают на узлах локальной сети, но выполняемые ими функции не относятся к технологии LAN.

Компоненты локальной сети[править]

Локальные сети (ЛС, представляющие собой самую элементарную форму сетей, соединяют вместе группу ПК или связывают их с более мощным компьютером, выполняющим роль сетевого сервера. Все ПК в локальной сети могут использовать специализированные приложения, хранящиеся на сетевом сервере, и работать с общими устройствами: принтерами, факсами и другой периферией. Каждый ПК в локальной сети называется рабочей станцией или сетевым узлом.

Локальные сети позволяют отдельным пользователям легко и быстро взаимодействовать друг с другом. Вот лишь некоторые задачи, которые позволяет выполнять ЛС:

  • совместная работа с документами;
  • упрощение документооборота: вы получаете возможность просматривать, корректировать и комментировать документы не покидая своего рабочего места, не организовывая собраний и совещаний, отнимающих много времени;
  • сохранение и архивирование своей работы на сервере, чтобы не использовать ценное

пространство на жестком диске ПК;

  • простой доступ к приложениям на сервере;
  • облегчение совместного использования в организациях дорогостоящих ресурсов, таких как принтеры, накопители CD-ROM, жесткие диски и приложения (например, текстовые процессоры или программное обеспечение баз данных).

Территориально-распределенные сети

Территориально-распределенные сети обеспечивают компании те же преимущества, что и локальные, но при этом позволяют охватить большую территорию. Обычно для этого используется коммутируемая телефонная сеть общего пользования (PSTN, Public Switched Telephone Network) с соединением через модем или линии высокоскоростной цифровой сети с предоставлением комплексных услуг (ISDN, Integrated Services Digital Network). Линии ISDN часто применяются для передачи больших файлов, например содержащих графические изображения или видео.

Встраивая в базовые локальные сети функциональность территориально-распределенных сетей, реализуемую с помощью модема или сервера удаленного доступа, компании могут выгодно использовать технологии внешних коммуникаций, в том числе:

  • передачу и прием сообщений с помощью электронной почты (e-mail);
  • доступ к Internet.

Кроме того производительность труда повышается благодаря таким преимуществам, как возможность работать на дому (телекоммуникации или дистанционный доступ).

При частом использовании линии территориально-распределенной сети, возможно, разумнее отдать предпочтение арендуемой линии. Она будет обслуживать вас постоянно - круглосуточно и 365 дней в году. Арендуемая (выделенная) линия предоставляет аналоговый или цифровой сервис (цифровые линии дают меньше ошибок и обычно обеспечивают более высокую производительность по сравнению с аналоговыми). За арендуемую линию вносится фиксированная плата (а не переменная). В то же время модемное соединение или сервис ISDN предусматривают повременную оплату.

Какой бы сервис вы не выбрали, соединение удаленных пунктов в единую территориально-распределенную сеть обеспечивает всем пользователям ряд преимуществ от централизации данных и приложений, помогая вместе с тем распространить на всю организацию высокие стандарты обслуживания заказчиков.

Internet

Internet представляет собой огромную общедоступную глобальную сеть, соединяющую пользователей всего мира с хранилищами данных, изображений и звука. Стремительно расширяясь (примерно 200% в год), Internet играет все более важную роль в бизнесе.

На сегодня основными функциями Internet остаются электронная почта и обмен информацией между группами по интересам и исследователями. Сети становятся все более мощными, а к Internet подключается все большее число компаний и индивидуальных пользователей. Internet служит связующим звеном между компаниями, их потенциальными заказчиками и поставщиками. Сегодня Internet может поддерживать развивающиеся приложения передачи речи и видео, такие как системы дистанционного обучения и удаленной диагностики или лечения, предоставляя возможности обучения и получения медицинской помощи через Internet практически любой семье или компании.

Поскольку Internet представляет собой сеть коллективного пользования, у нее нет тех средств защиты, которые встроены в большинство частных локальных и территориально-распределенных сетей. Таким образом, предоставление доступа к ответственной корпоративной информации через Internet (в частности, в World Wide Web) требует особого внимания.

Сети Ethernet и Token Ring[править]

Token ring Технология локальной вычислительной сети (LAN) кольца с «маркерным доступом» — протокол локальной сети, который находится на канальном уровне (DLL) модели OSI. Он использует специальный трехбайтовый фрейм, названный маркером, который перемещается вокруг кольца. Владение маркером предоставляет право обладателю передавать информацию на носителе. Кадры кольцевой сети с маркерным доступом перемещаются в цикле.

Описание Станции на локальной вычислительной сети (LAN) Token ring логически организованы в кольцевую топологию с данными, передаваемыми последовательно от одной кольцевой станции до другой с управляющим маркером, циркулирующим вокруг кольцевого доступа управления. Этот механизм передачи маркера совместно использован ARCNET, маркерной шиной, и FDDI, и имеет теоретические преимущества перед стохастическим CSMA/CD Ethernet.

Передача маркера

Token Ring и IEEE 802.5 являются главными примерами сетей с передачей маркера. Сети с передачей маркера перемещают вдоль сети небольшой блок данных, называемый маркером. Владение этим маркером гарантирует право передачи. Если узел, принимающий маркер, не имеет информации для отправки, он просто переправляет маркер к следующей конечной станции. Каждая станция может удерживать маркер в течение определенного максимального времени (по умолчанию - 10 мс).

Данная технология предлагает вариант решения проблемы коллизий, которая возникает при работе локальной сети. В технологии Ethernet, такие коллизии возникают при одновременной передаче информации несколькими рабочими станциями, находящимися в пределах одного сегмента, то есть использующих общий физический канал данных.

Если у станции, владеющей маркером, имеется информация для передачи, она захватывает маркер, изменяет у него один бит (в результате чего маркер превращается в последовательность «начало блока данных»), дополняет информацией, которую он хочет передать и отсылает эту информацию к следующей станции кольцевой сети. Когда информационный блок циркулирует по кольцу, маркер в сети отсутствует (если только кольцо не обеспечивает «раннего освобождения маркера» — early token release), поэтому другие станции, желающие передать информацию, вынуждены ожидать. Следовательно, в сетях Token Ring не может быть коллизий. Если обеспечивается раннее высвобождение маркера, то новый маркер может быть выпущен после завершения передачи блока данных.

Информационный блок циркулирует по кольцу, пока не достигнет предполагаемой станции назначения, которая копирует информацию для дальнейшей обработки. Информационный блок продолжает циркулировать по кольцу; он окончательно удаляется после достижения станции, отославшей этот блок. Станция отправки может проверить вернувшийся блок, чтобы убедиться, что он был просмотрен и затем скопирован станцией назначения.



Сфера применения

В отличие от сетей CSMA/CD (например, Ethernet) сети с передачей маркера являются детерминистическими сетями. Это означает, что можно вычислить максимальное время, которое пройдет, прежде чем любая конечная станция сможет передавать. Эта характеристика, а также некоторые характеристики надежности, делают сеть Token Ring идеальной для применений, где задержка должна быть предсказуема и важна устойчивость функционирования сети. Примерами таких применений является среда автоматизированных станций на заводах. Применяется как более дешевая технология, получила распространение везде, где есть ответственные приложения, для которых важна не столько скорость, сколько надежная доставка информации. В настоящее время Ethernet по надежности не уступает Token Ring и существенно выше по производительности.

Ethernet пакетная технология передачи данных преимущественно локальных компьютерных сетей.

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде — на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 90-х годов прошлого века, вытеснив такие устаревшие технологии, как Arcnet, FDDI и Token ring.

Технология

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический кабель.

Преимущества использования витой пары по сравнению с коаксиальным кабелем:

  • возможность работы в дуплексном режиме;
  • низкая стоимость кабеля «витой пары»;
  • более высокая надёжность сетей при неисправности в кабеле;[источник не указан 363 дня]
  • минимально допустимый радиус изгиба меньше;
  • большая помехозащищенность из-за использования дифференциального сигнала;
  • возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);
  • отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, *отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт и иногда даже полным «выгоранием» системного блока.

Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.

Метод управления доступом (для сети на коаксиальном кабеле) — множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Режим работы полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов, в основном по причине полудуплексного режима работы.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с и появилась возможность работы в режиме полный дуплекс. В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с для передачи по оптическому волокну и ещё через два года для передачи по витой паре.

Разновидности Ethernet

В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологии. Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во всех нижеперечисленных вариантах.

В этом разделе дано краткое описание всех официально существующих разновидностей. По некоторым причинам, в дополнение к основному стандарту многие производители рекомендуют пользоваться другими запатентованными носителями — например, для увеличения расстояния между точками сети используется волоконно-оптический кабель.

Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных, используя автоопределение (autonegotiation) скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 — поддерживает стандарты 10BASE-T, 100BASE-TX и 1000BASE-T.

Перспективы

О Terabit Ethernet (так упрощенно называют технологию Ethernet со скоростью передачи 1 Тб/с) стало известно в 2008 году из заявления создателя Ethernet Боба Меткалфа на конференции OFC[6] который предположил, что технология будет разработана к 2015 году, правда, не выразив при этом какой-либо уверенности, ведь для этого придется решить немало проблем. Однако, по его мнению, ключевой технологией, которая может обслужить дальнейший рост трафика, станет одна из разработанных в предыдущем десятилетии — DWDM.

«Чтобы реализовать Ethernet 1 Тб/с, необходимо преодолеть множество ограничений, включая 1550-нанометровые лазеры и модуляцию с частотой 15 ГГц. Для будущей сети нужны новые схемы модуляции, а также новое оптоволокно, новые лазеры, в общем, все новое, -сказал Меткалф. — Неясно также, какая сетевая архитектура потребуется для ее поддержки. Возможно, оптические сети будущего должны будут использовать волокно с вакуумной сердцевиной или углеродные волокна вместо кремниевых. Операторы должны будут внедрять больше полностью оптических устройств и оптику в свободном пространстве (безволоконную). Боб Меткалф».

Защита сетевых линий от потери информации[править]

Кабельная система

Кабельная система остается главной "ахилессовой пятой" большинства локальных вычислительных сетей: по данным различных исследований, именно кабельная система является причиной более чем половины всех отказов сети . В связи с этим кабельной системе должно уделяться особое внимание с самого момента проектирования сети.

Наилучшим способом избавить себя от "головной боли" по поводу неправильной прокладкй кабеля является использование получивших широкое распространение в последнее время так называемых структурированных кабельных систем, использующих одинаковые кабели для передачи данных в локальной вычислительной сети, локальной телефонной сети, передачи видеоинформации или сигналов от датчиков пожарной безопасности или охранных систем. К структурированным кабельным системам относятся, например, SYSTIMAX SCS фирмы АТ&T, OPEN DECconnect компании Digital, кабельная система корпорации IBM.

Понятие "структурированность" означает, что кабельную систему здания можно разделить на несколько уровней в зависимости от назначения и месторасположения компонентов кабельной системы. Например, кабельная система SYSTIMAX SCS состоит из:

  • некорректное использование программного и аппаратного обеспечения, ведущее к уничтожению или изменению данных.
  • Внешней подсистемы (campus subsystem)
  • Аппаратных (equipment room)
  • Административной подсистемы (administrative subsystem)
  • Магистрали (backbone cabling)
  • Горизонтальной подсистемы (horizontal subsystem)

Внешняя подсистема состоит из медного и оптоволоконного кабеля, устройств электрической защиты и заземления и связывает коммуникационную и обрабатывающую аппаратуру в здании (или комплексе зданий). Кроме того, в эту подсистему входят устройства сопряжения внешних кабельных линий с внутренними.

Аппаратные служат для размещения различного коммуникационного оборудования, предназначенного для обеспечения работы административной подсистемы.

Административная подсистема предназначена для быстрого и легкого управления кабельной системой SYSTIMAX SCS при изменении планов размещения персонала и отделов. В ее состав входят кабельная система (неэкранированная витая пара и оптоволокно), устройства коммутации и сопряжения магистрали и горизонтальной подсистемы, соединительные шнуры, маркировочные средства и т.д.

Магистраль состоит из медного кабеля или комбинации медного и оптоволоконного кабеля и вспомогательного оборудования. Она связывает между собой этажи здания или большие площади одного и того же этажа.

Горизонтальная система на базе витого медного кабеля расширяет основную магистраль от входных точек административной системы этажа к розеткам на рабочем месте.

И, наконец, оборудование рабочих мест включает в себя соединительные шнуры, адаптеры, устройства сопряжения и обеспечивает механическое и электрическое соединение между оборудованием рабочего места и горизонтальной кабельной подсистемой.

Наилучшим способом защиты кабеля от физических (а иногда и температурных и химических воздействий, например, в производственных цехах) является прокладка кабелей с использованием в различной степени защищенных коробов. При прокладке сетевого кабеля вблизи источников электромагнитного излучения необходимо выполнять следующие требования:

  • неэкранированная витая пара должна отстоять минимум на 15-30 см от электрического кабеля, розеток, трансформаторов и т. д.
  • требования к коаксиальному кабелю менее жесткие - расстояние до электрической линии или электроприборов должно быть не менее 10-15 см.

Другая важная проблема правильной инсталляции и безотказной работы кабельной системы - соответствие всех ее компонентов требованиям международных стандартов.

Наибольшее распространение в настоящее время получили следующие стандарты кабельных систем:

Спецификации корпорации IBM, которые предусматривают девять различных типов кабелей. Наиболее распространенным среди них является кабель IBM type 1 - экранированная витая пара (STP) для сетей Token Ring.

Система категорий Underwriters Labs (UL) представлена этой лабораторией совместно с корпорацией Anixter. Система включает пять уровней кабелей. В настоящее время система UL приведена в соответствие с системой категорий EIA/TIA.

Стандарт EIA/TIA 568 был разработан совместными усилиями UL, American National Standards Institute (ANSI) и Electronic Industry Association/Telecommunications Industry Association, подгруппой TR41.8. 1 для кабельных систем на витой паре (UTP).

В дополнение к стандарту EIA/TIA 568 существует документ DIS 1 180i, разработанный International Standard Organisation (ISO) и International Electrotechnical Commission (IEC). Данный стандарт использует термин "категория" для отдельных кабелей и термин "класс" для кабельных систем.

Необходимо также отметить, что требования стандарта EIA/TIA 568 относятся только к сетевому кабелю. Но реальные системы, помимо кабеля, включают также соединительные разъемы, розетки, распределительные панели и другие элементы. Использование только кабеля категории 5 не гарантирует создание кабельной системы этой категории. В связи с этим все вышеперечисленное оборудование должно быть также сертифицировано на соответствие данной категории кабельной системы.

ЗАНЯТИЕ:ГЛОБАЛЬНЫЕ СЕТИ[править]

Административное устройство[править]

Internet по организации во многом напоминает церковь. Это организация с полностью добровольным участием. Управляется она чем-то наподобие совета старейшин, однако, у Internet нет патриарха, президента или Папы. Составляющие сети могут иметь своих президентов или аналогичных вождей, но это совсем другое дело; в Internet нет единственной авторитарной фигуры.

Высшая власть, где бы Internet ни была, остается за ISOC (Internet Society). ISOC - общество с добровольным членством. Его цель - способствовать глобальному обмену информацией через Internet. Оно назначает совет старейшин, который отвечает за техническую политику, поддержку и управление Internet.

Совет старейшин представляет собой группу приглашенных добровольцев, называемую IAB (Совет по архитектуре Internet.). IAB регулярно собирается, чтобы ``благословить стандарты и распределить ресурсы, такие, например, как адреса. Internet работает, поскольку имеются стандартные способы общения между компьютерами и прикладными программами. Это позволяет компьютерам разного типа связываться без особых проблем. IAB ответственен за стандарты; он решает, когда стандарт необходим и каким ему следует быть. Когда требуется стандарт, совет рассматривает проблему, принимает стандарт и по сети оповещает о нем мир. IAB также следит за различными номерами (и другими вещами), которые должны оставаться уникальными. Например, каждый компьютер в Internet имеет свой уникальный 32-разрядный двоичный адрес; никакой другой компьютер не имеет такого же. Как присваивается этот адрес? IAB заботится о такого рода проблемах. Он не присваивает адресов самолично, но разрабатывает правила, как эти адреса присваивать.

Пользователи Internet высказывают свои жалобы и предложения на встречах IETF (Оперативного инженерного отряда Internet). IETF - это другая добровольная организация; также собирается регулярно, чтобы обсудить текущие эксплуатационные и назревающие технические проблемы. При обсуждении достаточно важной проблемы IETF создает рабочую группу для ее дальнейшего исследования. (На практике ``достаточно важная обычно означает, что для рабочей группы находится достаточное количество добровольцев). Посещать встречи IETF и состоять в рабочих группах могут все; главное, чтобы люди работали, дело-то добровольное. Рабочие группы имеют различные функции: это может быть выпуск документации, выработка стратегии действий при возникновении проблем, стратегические исследования, разработка новых стандартов и протоколов, доработка уже существующих (например, изменение значений отдельных полей). Рабочая группа обычно выпускает доклад. В зависимости от вида рекомендации, это может быть просто документацией и быть доступной для любого желающего, что может быть принято добровольно как здравая идея, или же это может быть послано в IAB и быть объявленной стандартом.

Если некая сеть принимает учение Internet, присоединяется к ней и считает себя ее частью, тогда она и является частью Internet. Возможно ей многое покажется неразумным, странным, сомнительным - она может поделиться своими сомнениями с IETF. Некоторые жалобы-предложения могут оказаться вполне разумными и, возможно, Internet соответственно изменится. Что-то может показаться просто делом вкуса или традиции, тогда эти возражения будут отклонены. Если сеть делает что-либо, что может навредить Internet, она может быть исключена из сообщества до тех пор, пока она не исправится.

Сейчас Internet состоит из более чем 12 тысяч объединенных между собой сетей.

Возможности Internet[править]

Internet предоставляет пользователям всевозможные информационные и коммуникационные услуги. Информационные услуги - услуги доступа к информации:

  • доступ к информационные ресурсам сети, то есть можно получить необходимую информацию, имеющуюся на серверах сети, например, документы, файлы, информацию из различных баз данных и т.п.;
  • размещение собственной информации в сети. Существует множество серверов, предоставляющих возможность бесплатно разместить на них информацию. Если информация размещается в целях публикации, то любые пользователи Internet могут получить доступ к этой информации и получать и просматривать ее в любое время.

Коммуникационные услуги - услуги обмена информацией, общения:

  • обмен информацией в отсроченном режиме. Так работает, например, электронная почта. Отправитель направляет письмо в почтовый ящик получателя, который просмотрит это письмо в удобное для него время.

обмен в режиме реального времени. Например, разговоры в сети. Люди набирают свои реплики с клавиатуры и посылают их на разговорный сервер, и эти реплики видят все участники разговора одновременно.

В сети Internet Вы можете найти:

  • образовательные и познавательные ресурсы;
  • энциклопедии и словари;
  • информационно-поисковые службы;
  • развлекательные ресурсы;
  • справочные ресурсы (расписание поездов, погода, телефонные коды и номера);
  • рекламные объявления;
  • Internet-магазины;
  • Internet-банки (Internet-деньги);

В сети Internet Вы получаете возможность:

  • просматривать содержимое мультимедийных страниц;
  • отсылать и получать электронные письма;
  • участвовать в телеконференциях, форумах;
  • общаться в разговорных комнатах;
  • совершать покупки в магазинах;
  • играть в сетевые компьютерные игры с множеством игроков и многое, многое другое.

WWW-технологии[править]

Что такое Интернет[править]

Internet – глобальная компьютерная сеть, охватывающая весь мир. Сегодня Internet имеет около 30 миллионов абонентов в более чем 180 странах мира. Ежемесячно размер сети увеличивается на 5-7%.

Всплеск интереса к глобальной информационной сети Internet наблюдается сейчас повсеместно. В сложившихся условиях потребность в информации о сети Internet становится особенно острой.

В действительности Internet не просто сеть, - она есть структура, объединяющая обычные сети. Internet – это «Сеть сетей».

Для организации межсетевых соединений необходим соответствующий протокол.

Протокол – это набор договоренностей, который определяет обмен данными между различными программами. Протоколы задают способы передачи сообщений и обработки ошибок в сети, а также позволяют разработать стандарты, не привязанные к конкретной аппаратной платформе. Все программы – от скорости передачи данных до методов адресации при транспортировке отдельных сообщений – задаются протоколом, используемых в данной конкретной сети.

В Internet базовым протоколом служит ТСР/ IP. IP отвечает за адресацию сетевых узлов, а ТСР обеспечивает доставку сообщений по нужному адресу. Эти мощные протоколы были предложены в 1974 г. Робертом Кэном, одним из основных разработчиков ARPANET, и ученым – компьютерщиком Винтоном Серфом, вице – президентом CNRI. Internet ныне превратилась в многопротокольную сеть, интегрирующую другие стандарты. Основные среди них – стандарты взаимодействия открытых систем (OSI).

В Internet нет единого пункта подписки или регистрации; вместо этого вы контактируете с поставщиком услуг, который предоставляет вам доступ к сети через местный компьютер. Последствия такой децентрализации с точки зрения доступности сетевых ресурсов также весьма значительны. Среду передачи данных в Internet нельзя рассматривать только как паутину проводов или оптоволоконных линий. Оцифрованные данные пересылаются через маршрутизаторы, которые соединяют сети и с помощью сложных алгоритмов выбирают наилучшие маршруты для информационных потоков.

Всемирная паутина[править]

Несмотря на то, что в первые годы своего существования Gopher завоевал большую популярность, назревала нужда в какой – то более простой и в то же время максимально универсальной системе, в которой связи между ресурсами были бы более свободными и ассоциативными. Такая система была разработана в 1993 г. и названа WWW. Система WWW строится на понятии гипертекстом, или, точнее, гипермедиа.

Гипертекст – это текст, составные части которого связаны друг с другом и с друг и с другими текстами с помощью ссылок.

Гипермедиа – это то, что получится из гипертекста, если заменить в его определении слово «текст» на выражение «любые виды информации». WWW означает буквально «всемирная паутина». WWW позволяет не отказываться от информационных ресурсов уже накопленных в Internet, доступных с помощью других средств: FTP, Telnet и Gopher. Более того, работа с этими ресурсами через WWW настолько удобна, что FTP клиенты, бывшие когда - то отдельным классом программ, теперь используются лишь немногим.

Главное в WWW – это не удобства доступа FTP архиву и Gopher меню,а быстрота создания и обновления, богатые изобразительные возможности в сочетании с легкостью доступа и огромной аудиторией сделала WWW новым средством массовой информации. С другой стороны, быстрому распространению системы, столь естественно объединяющий разнородные ресурсы, способствовало не в последнюю очередь ее зарождение не в недрах коммерческой фирмы, а в научном учреждении – Европейской лаборатории физики частиц, сотрудники которой не стали делать секретов из своей разработки и даже не попытались на ней разбогатеть. К счастью, сама природа WWW как средства поиска и организации информации позволяет надеяться, что это изобретение не превратится в инструмент одной лишь коммерции и рекламы. Серверы и клиенты WWW связываются между собой по протоколу НТТР. URL для WWW выглядит так http://<адрес сервера> .

Поисковые инструменты первого типа чаще всего называются предметными, или тематическими каталогами. Компания, владеющая таким каталогом, непрерывно ведет огромную работу, исследуя, описывая, каталогизируя и раскладывая по полочкам содержимое WWW серверов и других сетевых ресурсов, разбросанных по всему миру. Результатом ее титанических усилий является постоянно обновляющийся иерархический каталог. На верхнем уровне каталога собраны самые общие категории, такие как «бизнес», «наука» и др. Элементы самого нижнего уровня представляют собой ссылки на отдельные WWW страницы вместе с кратким описанием их содержимого. Гарантий того, что такой каталог действительно охватывает все содержимое WWW, никто не даст, однако возможная неполнота и даже однобокость подбора материалов с лихвой искупается тем, что пока еще не под силу никакому компьютеру – осмысленность отбора.

Предметные каталоги представляют и возможность поиска по ключевым словам. Однако поиск этот происходит не в содержимом самих WWW серверов, а их кратких описаниях, хранящихся в каталоге. Предметные каталоги Internetа можно пересчитать буквально на пальцах, так как их создание и поддержка требуют огромных затрат. К наиболее известным относятся Yahoo, WWW Virtual Library, Galaxy и некоторые другие. Одно из самых известных систем такого рода – каталог Magellan. Эта база данных содержит сведенья о 80 тыс. WWW страниц, что очень немного в сравнении с теми миллионами, которые существуют в сети. Однако если Yahoo в качестве описания ресурса использует одну – две строчки текста, то сотрудники системы Magellan на некоторые из страниц, заносимые в их базу данных, сами пишут небольшие рецензии, а также оценивают качество этих информационных ресурсов по пятибалльной шкале. Помимо базы рецензии, Magellan владеет также собственным автоматическим индексом, для поиска в котором нужно перебросить переключатель под полем ввода в положение entire database. Как правило, запрос представляет собой одно или несколько ключевых слов, разделенных пробелом.

Похожая по своим принципам служба фирмы Point вообще основной упор делает не на поиск, а на работу с тематическим каталогом. Служба Point известна в сети тем, что ее сотрудники постоянно заняты оцениванием сетевых ресурсов и ведут списки тех узлов, которые как они считают, принадлежат к «лучшим пяти процентам WWW».

Сама фирма Point ведет общедоступную базу данных всех «пятипроцентных» WWW страниц, где о каждом можно прочитать подробную лицензию. Самым старым предметным каталога WWW является каталог Virtual Library . Эта система достаточно полно охватывает научную прослойку WWW серверы университетов, лабораторий и учебных заведений.

Для пользователей в нашей стране определенный интерес может представлять тематический каталог Russia – on- line Subject Guide[4] . Этот каталог содержит довольно пестрое собрание ссылок на зарубежные источники плюс тематический обзор российских и русскоязычных ресурсов WWW.

К проблеме поиска информации в Internet можно подойти и с другой стороны. Существуют программы, в которые загрузили несколько тысяч общеизвестных программ, в которые загрузили несколько тысяч общеизвестных URL адресов. Будучи запущена на компьютере с доступом к WWW, эта программа начинает автоматически скачивать из сети документы по этим URL, причем из каждого нового документа она извлекает все содержащиеся в нем ссылки и добавляет их в свою базу адресов. Поскольку все WWW документы связаны между собой, рано или поздно такая программа обойдет весь Internet. Разумеется, программа не может ни понять, ни как – либо классифицировать то, что она видит в сети. Программы такого типа называются роботами. Они ограничиваются сбором статической информации и построением слов – указателей (индексов) по текстам документов. Собираемая роботом база данных – индекс – хранит в себе сведения о том, в каких WWW документах содержатся те или иные слова. Именно такой автоматически собираемый индекс и лежит в основном поисковых систем второго типа, которые часто так и называют – Автоматические индексы. Автоматический индекс состоит из трех частей: программы – роботы, собираемой этим роботом базы данных и интерфейса для поиска в этой базе, с которым работает пользователь. Все эти компоненты вполне могут функционировать без вмешательства человека. Поскольку какая – либо классификация или оценивание материалов в системах такого рода отсутствует, к ним следует прибегать только тогда, когда вы точно знаете ключевые слова, относящиеся к тому, что вам нужно, например фамилию человека или несколько достаточно редких терминов из соответствующей области.

Если же задать по сколько – нибудь распространенным словам, то вам не хватит жизни, чтобы обойти все полученное в результате прииска URL адреса. Например, индекс системы Alta Vista содержит 11 млрд. слов, извлеченных из 30 млн. WWW страниц. Автоматических индексов WWW страниц существует немало: WebCrawler, Lycos, Excite, Inktomi, Open Text и др. Некоторые из них (например, Lycos) представляют собой более или менее удачливый синтез предметного каталога и автоматического индекса.

Одним из мощных поисковых средств в World Wide Web является система Hot Bot, содержащая сведения о полных текстах 110 млн. страниц. Адрес: http://www. Hotbot.com. Hotbot принадлежит к новейшим системам, поэтому его углубленный поиск дает поразительно широкие возможности для детализации запроса. Это достигается за счет использования многоступенчатого меню, предполагающего различные варианты составления поискового предписания. Можно осуществить поиск по наличию в документе одного или нескольких терминов, поиск по определенной фазе, поиск конкретного лица или ссылки на определенный электронный адрес.

Всемирная паутина вокруг Википедии